从因子模型到深度学习:重塑经验资产定价的机器学习

Junyi Ye, Bhaskar Goswami, Jingyi Gu, Ajim Uddin, Guiling Wang
{"title":"从因子模型到深度学习:重塑经验资产定价的机器学习","authors":"Junyi Ye, Bhaskar Goswami, Jingyi Gu, Ajim Uddin, Guiling Wang","doi":"arxiv-2403.06779","DOIUrl":null,"url":null,"abstract":"This paper comprehensively reviews the application of machine learning (ML)\nand AI in finance, specifically in the context of asset pricing. It starts by\nsummarizing the traditional asset pricing models and examining their\nlimitations in capturing the complexities of financial markets. It explores how\n1) ML models, including supervised, unsupervised, semi-supervised, and\nreinforcement learning, provide versatile frameworks to address these\ncomplexities, and 2) the incorporation of advanced ML algorithms into\ntraditional financial models enhances return prediction and portfolio\noptimization. These methods can adapt to changing market dynamics by modeling\nstructural changes and incorporating heterogeneous data sources, such as text\nand images. In addition, this paper explores challenges in applying ML in asset\npricing, addressing the growing demand for explainability in decision-making\nand mitigating overfitting in complex models. This paper aims to provide\ninsights into novel methodologies showcasing the potential of ML to reshape the\nfuture of quantitative finance.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Factor Models to Deep Learning: Machine Learning in Reshaping Empirical Asset Pricing\",\"authors\":\"Junyi Ye, Bhaskar Goswami, Jingyi Gu, Ajim Uddin, Guiling Wang\",\"doi\":\"arxiv-2403.06779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper comprehensively reviews the application of machine learning (ML)\\nand AI in finance, specifically in the context of asset pricing. It starts by\\nsummarizing the traditional asset pricing models and examining their\\nlimitations in capturing the complexities of financial markets. It explores how\\n1) ML models, including supervised, unsupervised, semi-supervised, and\\nreinforcement learning, provide versatile frameworks to address these\\ncomplexities, and 2) the incorporation of advanced ML algorithms into\\ntraditional financial models enhances return prediction and portfolio\\noptimization. These methods can adapt to changing market dynamics by modeling\\nstructural changes and incorporating heterogeneous data sources, such as text\\nand images. In addition, this paper explores challenges in applying ML in asset\\npricing, addressing the growing demand for explainability in decision-making\\nand mitigating overfitting in complex models. This paper aims to provide\\ninsights into novel methodologies showcasing the potential of ML to reshape the\\nfuture of quantitative finance.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.06779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.06779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文全面回顾了机器学习(ML)和人工智能在金融领域的应用,特别是在资产定价方面的应用。文章首先总结了传统的资产定价模型,并探讨了这些模型在捕捉金融市场复杂性方面的局限性。它探讨了 1) 包括监督、无监督、半监督和强化学习在内的 ML 模型如何为解决这些复杂性提供多功能框架,以及 2) 将先进的 ML 算法纳入传统金融模型如何增强回报预测和投资组合优化。这些方法可以通过对结构变化进行建模并纳入异构数据源(如文本和图像)来适应不断变化的市场动态。此外,本文还探讨了在资产定价中应用 ML 所面临的挑战,以满足决策中对可解释性日益增长的需求,并减轻复杂模型中的过度拟合。本文旨在提供新颖方法的见解,展示 ML 重塑量化金融未来的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Factor Models to Deep Learning: Machine Learning in Reshaping Empirical Asset Pricing
This paper comprehensively reviews the application of machine learning (ML) and AI in finance, specifically in the context of asset pricing. It starts by summarizing the traditional asset pricing models and examining their limitations in capturing the complexities of financial markets. It explores how 1) ML models, including supervised, unsupervised, semi-supervised, and reinforcement learning, provide versatile frameworks to address these complexities, and 2) the incorporation of advanced ML algorithms into traditional financial models enhances return prediction and portfolio optimization. These methods can adapt to changing market dynamics by modeling structural changes and incorporating heterogeneous data sources, such as text and images. In addition, this paper explores challenges in applying ML in asset pricing, addressing the growing demand for explainability in decision-making and mitigating overfitting in complex models. This paper aims to provide insights into novel methodologies showcasing the potential of ML to reshape the future of quantitative finance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信