熵校正几何布朗运动

Rishabh Gupta, Ewa Drzazga-Szczȩśniak, Sabre Kais, Dominik Szczȩśniak
{"title":"熵校正几何布朗运动","authors":"Rishabh Gupta, Ewa Drzazga-Szczȩśniak, Sabre Kais, Dominik Szczȩśniak","doi":"arxiv-2403.06253","DOIUrl":null,"url":null,"abstract":"The geometric Brownian motion (GBM) is widely employed for modeling\nstochastic processes, yet its solutions are characterized by the log-normal\ndistribution. This comprises predictive capabilities of GBM mainly in terms of\nforecasting applications. Here, entropy corrections to GBM are proposed to go\nbeyond log-normality restrictions and better account for intricacies of real\nsystems. It is shown that GBM solutions can be effectively refined by arguing\nthat entropy is reduced when deterministic content of considered data\nincreases. Notable improvements over conventional GBM are observed for several\ncases of non-log-normal distributions, ranging from a dice roll experiment to\nreal world data.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The entropy corrected geometric Brownian motion\",\"authors\":\"Rishabh Gupta, Ewa Drzazga-Szczȩśniak, Sabre Kais, Dominik Szczȩśniak\",\"doi\":\"arxiv-2403.06253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometric Brownian motion (GBM) is widely employed for modeling\\nstochastic processes, yet its solutions are characterized by the log-normal\\ndistribution. This comprises predictive capabilities of GBM mainly in terms of\\nforecasting applications. Here, entropy corrections to GBM are proposed to go\\nbeyond log-normality restrictions and better account for intricacies of real\\nsystems. It is shown that GBM solutions can be effectively refined by arguing\\nthat entropy is reduced when deterministic content of considered data\\nincreases. Notable improvements over conventional GBM are observed for several\\ncases of non-log-normal distributions, ranging from a dice roll experiment to\\nreal world data.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.06253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.06253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几何布朗运动(GBM)被广泛用于模拟随机过程,但其解的特征是对数正态分布。这使得 GBM 的预测能力主要局限于预测应用。本文提出了对 GBM 的熵修正,以超越对数正态性限制,更好地解释错综复杂的真实系统。研究表明,当考虑数据的确定性内容增加时,熵会减少,因此可以有效地完善 GBM 解决方案。从掷骰子实验到真实世界的数据,在非对数正态分布的几种情况下,与传统的 GBM 相比都有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The entropy corrected geometric Brownian motion
The geometric Brownian motion (GBM) is widely employed for modeling stochastic processes, yet its solutions are characterized by the log-normal distribution. This comprises predictive capabilities of GBM mainly in terms of forecasting applications. Here, entropy corrections to GBM are proposed to go beyond log-normality restrictions and better account for intricacies of real systems. It is shown that GBM solutions can be effectively refined by arguing that entropy is reduced when deterministic content of considered data increases. Notable improvements over conventional GBM are observed for several cases of non-log-normal distributions, ranging from a dice roll experiment to real world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信