团队语义的维度

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Lauri Hella, Kerkko Luosto, Jouko Väänänen
{"title":"团队语义的维度","authors":"Lauri Hella, Kerkko Luosto, Jouko Väänänen","doi":"10.1017/s0960129524000021","DOIUrl":null,"url":null,"abstract":"<p>We introduce three measures of complexity for families of sets. Each of the three measures, which we call dimensions, is defined in terms of the minimal number of convex subfamilies that are needed for covering the given family. For upper dimension, the subfamilies are required to contain a unique maximal set, for dual upper dimension a unique minimal set, and for cylindrical dimension both a unique maximal and a unique minimal set. In addition to considering dimensions of particular families of sets, we study the behavior of dimensions under operators that map families of sets to new families of sets. We identify natural sufficient criteria for such operators to preserve the growth class of the dimensions. We apply the theory of our dimensions for proving new hierarchy results for logics with team semantics. To this end we associate each atom with a natural notion or arity. First, we show that the standard logical operators preserve the growth classes of the families arising from the semantics of formulas in such logics. Second, we show that the upper dimension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311153531332-0533:S0960129524000021:S0960129524000021_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$k+1$</span></span></img></span></span>-ary dependence, inclusion, independence, anonymity, and exclusion atoms is in a strictly higher growth class than that of any <span>k</span>-ary atoms, whence the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311153531332-0533:S0960129524000021:S0960129524000021_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k+1$</span></span></img></span></span>-ary atoms are not definable in terms of any atoms of smaller arity.</p>","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"43 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension in team semantics\",\"authors\":\"Lauri Hella, Kerkko Luosto, Jouko Väänänen\",\"doi\":\"10.1017/s0960129524000021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce three measures of complexity for families of sets. Each of the three measures, which we call dimensions, is defined in terms of the minimal number of convex subfamilies that are needed for covering the given family. For upper dimension, the subfamilies are required to contain a unique maximal set, for dual upper dimension a unique minimal set, and for cylindrical dimension both a unique maximal and a unique minimal set. In addition to considering dimensions of particular families of sets, we study the behavior of dimensions under operators that map families of sets to new families of sets. We identify natural sufficient criteria for such operators to preserve the growth class of the dimensions. We apply the theory of our dimensions for proving new hierarchy results for logics with team semantics. To this end we associate each atom with a natural notion or arity. First, we show that the standard logical operators preserve the growth classes of the families arising from the semantics of formulas in such logics. Second, we show that the upper dimension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311153531332-0533:S0960129524000021:S0960129524000021_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k+1$</span></span></img></span></span>-ary dependence, inclusion, independence, anonymity, and exclusion atoms is in a strictly higher growth class than that of any <span>k</span>-ary atoms, whence the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311153531332-0533:S0960129524000021:S0960129524000021_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k+1$</span></span></img></span></span>-ary atoms are not definable in terms of any atoms of smaller arity.</p>\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000021\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000021","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们为集合的族引入了三种复杂性度量。我们称这三种度量为维度,每一种度量都是根据覆盖给定族所需的凸次族的最小数量来定义的。对于上维度,要求子集包含唯一的最大集;对于对偶上维度,要求子集包含唯一的最小集;对于圆柱维度,要求子集包含唯一的最大集和唯一的最小集。除了考虑特定集合族的维数外,我们还研究了将集合族映射到新集合族的算子下的维数行为。我们为这类算子确定了自然的充分标准,以保持维数的增长类。我们将维度理论用于证明具有团队语义的逻辑的新层次结果。为此,我们将每个原子与一个自然概念或算术联系起来。首先,我们证明了标准逻辑算子保留了此类逻辑中公式语义所产生的族的增长类。其次,我们证明了 $k+1$-ary 依存原子、包含原子、独立原子、匿名原子和排除原子的上维度是严格高于任何 k-ary 原子的增长类的,因此 $k+1$-ary 原子是不能用任何较小的原子来定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimension in team semantics

We introduce three measures of complexity for families of sets. Each of the three measures, which we call dimensions, is defined in terms of the minimal number of convex subfamilies that are needed for covering the given family. For upper dimension, the subfamilies are required to contain a unique maximal set, for dual upper dimension a unique minimal set, and for cylindrical dimension both a unique maximal and a unique minimal set. In addition to considering dimensions of particular families of sets, we study the behavior of dimensions under operators that map families of sets to new families of sets. We identify natural sufficient criteria for such operators to preserve the growth class of the dimensions. We apply the theory of our dimensions for proving new hierarchy results for logics with team semantics. To this end we associate each atom with a natural notion or arity. First, we show that the standard logical operators preserve the growth classes of the families arising from the semantics of formulas in such logics. Second, we show that the upper dimension of $k+1$-ary dependence, inclusion, independence, anonymity, and exclusion atoms is in a strictly higher growth class than that of any k-ary atoms, whence the $k+1$-ary atoms are not definable in terms of any atoms of smaller arity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信