{"title":"团队语义的维度","authors":"Lauri Hella, Kerkko Luosto, Jouko Väänänen","doi":"10.1017/s0960129524000021","DOIUrl":null,"url":null,"abstract":"<p>We introduce three measures of complexity for families of sets. Each of the three measures, which we call dimensions, is defined in terms of the minimal number of convex subfamilies that are needed for covering the given family. For upper dimension, the subfamilies are required to contain a unique maximal set, for dual upper dimension a unique minimal set, and for cylindrical dimension both a unique maximal and a unique minimal set. In addition to considering dimensions of particular families of sets, we study the behavior of dimensions under operators that map families of sets to new families of sets. We identify natural sufficient criteria for such operators to preserve the growth class of the dimensions. We apply the theory of our dimensions for proving new hierarchy results for logics with team semantics. To this end we associate each atom with a natural notion or arity. First, we show that the standard logical operators preserve the growth classes of the families arising from the semantics of formulas in such logics. Second, we show that the upper dimension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311153531332-0533:S0960129524000021:S0960129524000021_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$k+1$</span></span></img></span></span>-ary dependence, inclusion, independence, anonymity, and exclusion atoms is in a strictly higher growth class than that of any <span>k</span>-ary atoms, whence the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311153531332-0533:S0960129524000021:S0960129524000021_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k+1$</span></span></img></span></span>-ary atoms are not definable in terms of any atoms of smaller arity.</p>","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"43 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension in team semantics\",\"authors\":\"Lauri Hella, Kerkko Luosto, Jouko Väänänen\",\"doi\":\"10.1017/s0960129524000021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce three measures of complexity for families of sets. Each of the three measures, which we call dimensions, is defined in terms of the minimal number of convex subfamilies that are needed for covering the given family. For upper dimension, the subfamilies are required to contain a unique maximal set, for dual upper dimension a unique minimal set, and for cylindrical dimension both a unique maximal and a unique minimal set. In addition to considering dimensions of particular families of sets, we study the behavior of dimensions under operators that map families of sets to new families of sets. We identify natural sufficient criteria for such operators to preserve the growth class of the dimensions. We apply the theory of our dimensions for proving new hierarchy results for logics with team semantics. To this end we associate each atom with a natural notion or arity. First, we show that the standard logical operators preserve the growth classes of the families arising from the semantics of formulas in such logics. Second, we show that the upper dimension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311153531332-0533:S0960129524000021:S0960129524000021_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k+1$</span></span></img></span></span>-ary dependence, inclusion, independence, anonymity, and exclusion atoms is in a strictly higher growth class than that of any <span>k</span>-ary atoms, whence the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240311153531332-0533:S0960129524000021:S0960129524000021_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k+1$</span></span></img></span></span>-ary atoms are not definable in terms of any atoms of smaller arity.</p>\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000021\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000021","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We introduce three measures of complexity for families of sets. Each of the three measures, which we call dimensions, is defined in terms of the minimal number of convex subfamilies that are needed for covering the given family. For upper dimension, the subfamilies are required to contain a unique maximal set, for dual upper dimension a unique minimal set, and for cylindrical dimension both a unique maximal and a unique minimal set. In addition to considering dimensions of particular families of sets, we study the behavior of dimensions under operators that map families of sets to new families of sets. We identify natural sufficient criteria for such operators to preserve the growth class of the dimensions. We apply the theory of our dimensions for proving new hierarchy results for logics with team semantics. To this end we associate each atom with a natural notion or arity. First, we show that the standard logical operators preserve the growth classes of the families arising from the semantics of formulas in such logics. Second, we show that the upper dimension of $k+1$-ary dependence, inclusion, independence, anonymity, and exclusion atoms is in a strictly higher growth class than that of any k-ary atoms, whence the $k+1$-ary atoms are not definable in terms of any atoms of smaller arity.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.