利用图同源性表征交通网络中的流量复杂性

Shashank A Deshpande, Hamsa Balakrishnan
{"title":"利用图同源性表征交通网络中的流量复杂性","authors":"Shashank A Deshpande, Hamsa Balakrishnan","doi":"arxiv-2403.05749","DOIUrl":null,"url":null,"abstract":"Series-parallel network topologies generally exhibit simplified dynamical\nbehavior and avoid high combinatorial complexity. A comprehensive analysis of\nhow flow complexity emerges with a graph's deviation from series-parallel\ntopology is therefore of fundamental interest. We introduce the notion of a\nrobust $k$-path on a directed acycylic graph, with increasing values of the\nlength $k$ reflecting increasing deviations. We propose a graph homology with\nrobust $k$-paths as the bases of its chain spaces. In this framework, the\ntopological simplicity of series-parallel graphs translates into a triviality\nof higher-order chain spaces. We discuss a correspondence between the space of\norder-three chains and sites within the network that are susceptible to the\nBraess paradox, a well-known phenomenon in transportation networks. In this\nmanner, we illustrate the utility of the proposed graph homology in\nsytematically studying the complexity of flow networks.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Flow Complexity in Transportation Networks using Graph Homology\",\"authors\":\"Shashank A Deshpande, Hamsa Balakrishnan\",\"doi\":\"arxiv-2403.05749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Series-parallel network topologies generally exhibit simplified dynamical\\nbehavior and avoid high combinatorial complexity. A comprehensive analysis of\\nhow flow complexity emerges with a graph's deviation from series-parallel\\ntopology is therefore of fundamental interest. We introduce the notion of a\\nrobust $k$-path on a directed acycylic graph, with increasing values of the\\nlength $k$ reflecting increasing deviations. We propose a graph homology with\\nrobust $k$-paths as the bases of its chain spaces. In this framework, the\\ntopological simplicity of series-parallel graphs translates into a triviality\\nof higher-order chain spaces. We discuss a correspondence between the space of\\norder-three chains and sites within the network that are susceptible to the\\nBraess paradox, a well-known phenomenon in transportation networks. In this\\nmanner, we illustrate the utility of the proposed graph homology in\\nsytematically studying the complexity of flow networks.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.05749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.05749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

串联-并联网络拓扑结构通常表现出简化的动态行为,避免了高组合复杂性。因此,全面分析流量复杂性如何随着图偏离串并联拓扑结构而出现具有重要意义。我们在有向无环图上引入了一个稳健的 $k$ 路径概念,长度 $k$ 的增加值反映了偏差的增加。我们提出了一种以稳健的 k$ 路径为其链空间基础的图同源性。在这个框架中,序列平行图的拓扑简单性转化为高阶链空间的琐碎性。我们讨论了三阶链空间与网络中易受布雷斯悖论影响的地点之间的对应关系,布雷斯悖论是交通网络中的一个著名现象。通过这种方式,我们说明了所提出的图同源性在系统地研究流动网络复杂性方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Flow Complexity in Transportation Networks using Graph Homology
Series-parallel network topologies generally exhibit simplified dynamical behavior and avoid high combinatorial complexity. A comprehensive analysis of how flow complexity emerges with a graph's deviation from series-parallel topology is therefore of fundamental interest. We introduce the notion of a robust $k$-path on a directed acycylic graph, with increasing values of the length $k$ reflecting increasing deviations. We propose a graph homology with robust $k$-paths as the bases of its chain spaces. In this framework, the topological simplicity of series-parallel graphs translates into a triviality of higher-order chain spaces. We discuss a correspondence between the space of order-three chains and sites within the network that are susceptible to the Braess paradox, a well-known phenomenon in transportation networks. In this manner, we illustrate the utility of the proposed graph homology in sytematically studying the complexity of flow networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信