某些稀疏矩阵块编码的显式量子电路

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Daan Camps, Lin Lin, Roel Van Beeumen, Chao Yang
{"title":"某些稀疏矩阵块编码的显式量子电路","authors":"Daan Camps, Lin Lin, Roel Van Beeumen, Chao Yang","doi":"10.1137/22m1484298","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 801-827, March 2024. <br/> Abstract. Many standard linear algebra problems can be solved on a quantum computer by using recently developed quantum linear algebra algorithms that make use of block encodings and quantum eigenvalue/singular value transformations. A block encoding embeds a properly scaled matrix of interest [math] in a larger unitary transformation [math] that can be decomposed into a product of simpler unitaries and implemented efficiently on a quantum computer. Although quantum algorithms can potentially achieve exponential speedup in solving linear algebra problems compared to the best classical algorithm, such a gain in efficiency ultimately hinges on our ability to construct an efficient quantum circuit for the block encoding of [math], which is difficult in general, and not trivial even for well structured sparse matrices. In this paper, we give a few examples on how efficient quantum circuits can be explicitly constructed for some well structured sparse matrices and discuss a few strategies used in these constructions. We also provide implementations of these quantum circuits in MATLAB.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices\",\"authors\":\"Daan Camps, Lin Lin, Roel Van Beeumen, Chao Yang\",\"doi\":\"10.1137/22m1484298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 801-827, March 2024. <br/> Abstract. Many standard linear algebra problems can be solved on a quantum computer by using recently developed quantum linear algebra algorithms that make use of block encodings and quantum eigenvalue/singular value transformations. A block encoding embeds a properly scaled matrix of interest [math] in a larger unitary transformation [math] that can be decomposed into a product of simpler unitaries and implemented efficiently on a quantum computer. Although quantum algorithms can potentially achieve exponential speedup in solving linear algebra problems compared to the best classical algorithm, such a gain in efficiency ultimately hinges on our ability to construct an efficient quantum circuit for the block encoding of [math], which is difficult in general, and not trivial even for well structured sparse matrices. In this paper, we give a few examples on how efficient quantum circuits can be explicitly constructed for some well structured sparse matrices and discuss a few strategies used in these constructions. We also provide implementations of these quantum circuits in MATLAB.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1484298\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1484298","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷,第 1 期,第 801-827 页,2024 年 3 月。 摘要。利用最近开发的量子线性代数算法和量子特征值/奇异值变换,可以在量子计算机上解决许多标准线性代数问题。分块编码将适当缩放的相关矩阵[数学]嵌入一个更大的单元变换[数学]中,该单元变换可分解为较简单单元的乘积,并在量子计算机上高效实现。虽然与最佳经典算法相比,量子算法在求解线性代数问题时有可能实现指数级的加速,但这种效率的提高最终取决于我们是否有能力为[数学]的分块编码构建高效的量子电路,而这在一般情况下是很困难的,即使对于结构良好的稀疏矩阵也并非易事。在本文中,我们举了几个例子,说明如何为一些结构良好的稀疏矩阵明确构建高效量子电路,并讨论了在这些构建中使用的一些策略。我们还提供了这些量子电路在 MATLAB 中的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 801-827, March 2024.
Abstract. Many standard linear algebra problems can be solved on a quantum computer by using recently developed quantum linear algebra algorithms that make use of block encodings and quantum eigenvalue/singular value transformations. A block encoding embeds a properly scaled matrix of interest [math] in a larger unitary transformation [math] that can be decomposed into a product of simpler unitaries and implemented efficiently on a quantum computer. Although quantum algorithms can potentially achieve exponential speedup in solving linear algebra problems compared to the best classical algorithm, such a gain in efficiency ultimately hinges on our ability to construct an efficient quantum circuit for the block encoding of [math], which is difficult in general, and not trivial even for well structured sparse matrices. In this paper, we give a few examples on how efficient quantum circuits can be explicitly constructed for some well structured sparse matrices and discuss a few strategies used in these constructions. We also provide implementations of these quantum circuits in MATLAB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信