关于近马丁格尔和一类预期线性随机微分方程

Pub Date : 2023-12-16 DOI:10.1142/s0219025723500297
Hui-Hsiung Kuo, Pujan Shrestha, Sudip Sinha, Padmanabhan Sundar
{"title":"关于近马丁格尔和一类预期线性随机微分方程","authors":"Hui-Hsiung Kuo, Pujan Shrestha, Sudip Sinha, Padmanabhan Sundar","doi":"10.1142/s0219025723500297","DOIUrl":null,"url":null,"abstract":"<p>The goals of this paper are to prove a near-martingale optional stopping theorem and establish solvability and large deviations for a class of anticipating linear stochastic differential equations. For a class of anticipating linear stochastic differential equations, we prove the existence and uniqueness of solutions using two approaches: (1) Ayed–Kuo differential formula using an ansatz, and (2) a braiding technique by interpreting the integral in the Skorokhod sense. We establish a Freidlin–Wentzell type large deviations result for the solution of such equations. In addition, we prove large deviation results for small noise where the initial conditions are random.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On near-martingales and a class of anticipating linear stochastic differential equations\",\"authors\":\"Hui-Hsiung Kuo, Pujan Shrestha, Sudip Sinha, Padmanabhan Sundar\",\"doi\":\"10.1142/s0219025723500297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goals of this paper are to prove a near-martingale optional stopping theorem and establish solvability and large deviations for a class of anticipating linear stochastic differential equations. For a class of anticipating linear stochastic differential equations, we prove the existence and uniqueness of solutions using two approaches: (1) Ayed–Kuo differential formula using an ansatz, and (2) a braiding technique by interpreting the integral in the Skorokhod sense. We establish a Freidlin–Wentzell type large deviations result for the solution of such equations. In addition, we prove large deviation results for small noise where the initial conditions are random.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025723500297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目标是证明近马勒可选停顿定理,并建立一类预期线性随机微分方程的可解性和大偏差。对于一类预期线性随机微分方程,我们用两种方法证明了解的存在性和唯一性:(1) Ayed-Kuo 微分公式,使用 ansatz;(2) 编织技术,在 Skorokhod 意义上解释积分。我们为此类方程的解建立了一个弗雷德林-温采尔型大偏差结果。此外,我们还证明了初始条件为随机的小噪声的大偏差结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On near-martingales and a class of anticipating linear stochastic differential equations

The goals of this paper are to prove a near-martingale optional stopping theorem and establish solvability and large deviations for a class of anticipating linear stochastic differential equations. For a class of anticipating linear stochastic differential equations, we prove the existence and uniqueness of solutions using two approaches: (1) Ayed–Kuo differential formula using an ansatz, and (2) a braiding technique by interpreting the integral in the Skorokhod sense. We establish a Freidlin–Wentzell type large deviations result for the solution of such equations. In addition, we prove large deviation results for small noise where the initial conditions are random.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信