加权自由泊松随机变量的组合问题

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Nobuhiro Asai, Hiroaki Yoshida
{"title":"加权自由泊松随机变量的组合问题","authors":"Nobuhiro Asai, Hiroaki Yoshida","doi":"10.1142/s0219025724500012","DOIUrl":null,"url":null,"abstract":"<p>This paper will be devoted to the study of weighted (deformed) free Poisson random variables from the viewpoint of orthogonal polynomials and statistics of non-crossing partitions. A family of weighted (deformed) free Poisson random variables will be defined in a sense by the sum of weighted (deformed) free creation, annihilation, scalar, and intermediate operators with certain parameters on a weighted (deformed) free Fock space together with the vacuum expectation. We shall provide a combinatorial moment formula of non-commutative Poisson random variables. This formula gives us a very nice combinatorial interpretation to two parameters of weights. One can see that the deformation treated in this paper interpolates free and boolean Poisson random variables, their distributions and moments, and yields some conditionally free Poisson distribution by taking limit of the parameter.</p>","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"38 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial aspects of weighted free Poisson random variables\",\"authors\":\"Nobuhiro Asai, Hiroaki Yoshida\",\"doi\":\"10.1142/s0219025724500012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper will be devoted to the study of weighted (deformed) free Poisson random variables from the viewpoint of orthogonal polynomials and statistics of non-crossing partitions. A family of weighted (deformed) free Poisson random variables will be defined in a sense by the sum of weighted (deformed) free creation, annihilation, scalar, and intermediate operators with certain parameters on a weighted (deformed) free Fock space together with the vacuum expectation. We shall provide a combinatorial moment formula of non-commutative Poisson random variables. This formula gives us a very nice combinatorial interpretation to two parameters of weights. One can see that the deformation treated in this paper interpolates free and boolean Poisson random variables, their distributions and moments, and yields some conditionally free Poisson distribution by taking limit of the parameter.</p>\",\"PeriodicalId\":50366,\"journal\":{\"name\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025724500012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025724500012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文将致力于从正交多项式和非交叉分区统计的角度研究加权(变形)自由泊松随机变量。加权(变形)自由泊松随机变量族在某种意义上将由加权(变形)自由 Fock 空间上具有一定参数的加权(变形)自由创造、湮灭、标量和中间算子之和以及真空期望来定义。我们将提供非交换泊松随机变量的组合矩公式。这个公式为两个权重参数提供了非常好的组合解释。我们可以看到,本文所处理的变形插值了自由泊松和布尔泊松随机变量、它们的分布和矩,并通过取参数的极限得到了某种有条件的自由泊松分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial aspects of weighted free Poisson random variables

This paper will be devoted to the study of weighted (deformed) free Poisson random variables from the viewpoint of orthogonal polynomials and statistics of non-crossing partitions. A family of weighted (deformed) free Poisson random variables will be defined in a sense by the sum of weighted (deformed) free creation, annihilation, scalar, and intermediate operators with certain parameters on a weighted (deformed) free Fock space together with the vacuum expectation. We shall provide a combinatorial moment formula of non-commutative Poisson random variables. This formula gives us a very nice combinatorial interpretation to two parameters of weights. One can see that the deformation treated in this paper interpolates free and boolean Poisson random variables, their distributions and moments, and yields some conditionally free Poisson distribution by taking limit of the parameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields. It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信