无限晶格系统的耗散动力学

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Shreya Mehta, Boguslaw Zegarlinski
{"title":"无限晶格系统的耗散动力学","authors":"Shreya Mehta, Boguslaw Zegarlinski","doi":"10.1142/s0219025723500303","DOIUrl":null,"url":null,"abstract":"<p>We study dissipative dynamics constructed by means of non-commutative Dirichlet forms for various lattice systems with multiparticle interactions associated to CCR algebras. We give a number of explicit examples of such models. Using an idea of quasi-invariance of a state, we show how one can construct unitary representations of various groups. Moreover in models with locally conserved quantities associated to an infinite lattice we show that there is no spectral gap and the corresponding dissipative dynamics decay to equilibrium polynomially in time.</p>","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"32 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipative dynamics for infinite lattice systems\",\"authors\":\"Shreya Mehta, Boguslaw Zegarlinski\",\"doi\":\"10.1142/s0219025723500303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study dissipative dynamics constructed by means of non-commutative Dirichlet forms for various lattice systems with multiparticle interactions associated to CCR algebras. We give a number of explicit examples of such models. Using an idea of quasi-invariance of a state, we show how one can construct unitary representations of various groups. Moreover in models with locally conserved quantities associated to an infinite lattice we show that there is no spectral gap and the corresponding dissipative dynamics decay to equilibrium polynomially in time.</p>\",\"PeriodicalId\":50366,\"journal\":{\"name\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025723500303\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500303","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究通过非交换狄利克特形式为与 CCR 矩阵相关的多粒子相互作用的各种晶格系统构建的耗散动力学。我们给出了一些此类模型的明确示例。利用状态的准不变性思想,我们展示了如何构建各种群的单元表示。此外,在具有与无限晶格相关的局部守恒量的模型中,我们证明不存在谱隙,相应的耗散动力学会以多项式时间衰减到平衡状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative dynamics for infinite lattice systems

We study dissipative dynamics constructed by means of non-commutative Dirichlet forms for various lattice systems with multiparticle interactions associated to CCR algebras. We give a number of explicit examples of such models. Using an idea of quasi-invariance of a state, we show how one can construct unitary representations of various groups. Moreover in models with locally conserved quantities associated to an infinite lattice we show that there is no spectral gap and the corresponding dissipative dynamics decay to equilibrium polynomially in time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields. It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信