{"title":"利用数据驱动的迭代学习控制实现多代理系统的有限时间非对称双方共识","authors":"Jiaqi Liang;Xuhui Bu;Zhongsheng Hou","doi":"10.1109/TSIPN.2024.3375602","DOIUrl":null,"url":null,"abstract":"A general finite-time bipartite consensus problem is studied for multi-agent systems with completely unknown nonlinearities. An asymmetric bipartite consensus task is defined by introducing a proportional-related coefficient and a relationship-related index, which arranges that the agents reach an agreement with proportional modulus and opposite signs. With the cooperative-antagonistic interactions, a model-free adaptive bipartite iterative learning consensus protocol is proposed for promoting the accuracy of the performance within a finite-time interval. By employing the matrix transformation and property of the nonnegative matrix, the iteratively asymptotic convergence of the error of the MAS is guaranteed under the structurally balanced digraph has an oriented spanning tree. This differs from MFAILC results that have been proven based on matrix norm and do not require strong connectivity of digraphs. Moreover, the bounds for elements in the estimation-related matrices are presented, followed by providing a graph correlated sufficient condition to guide selection of control parameters. The results further extend to the control of asymmetric bipartite consensus tracking. The simulation examples verify the effectiveness of the distributed learning control protocols.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"227-238"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-Time Asymmetric Bipartite Consensus for Multi-Agent Systems Using Data-Driven Iterative Learning Control\",\"authors\":\"Jiaqi Liang;Xuhui Bu;Zhongsheng Hou\",\"doi\":\"10.1109/TSIPN.2024.3375602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general finite-time bipartite consensus problem is studied for multi-agent systems with completely unknown nonlinearities. An asymmetric bipartite consensus task is defined by introducing a proportional-related coefficient and a relationship-related index, which arranges that the agents reach an agreement with proportional modulus and opposite signs. With the cooperative-antagonistic interactions, a model-free adaptive bipartite iterative learning consensus protocol is proposed for promoting the accuracy of the performance within a finite-time interval. By employing the matrix transformation and property of the nonnegative matrix, the iteratively asymptotic convergence of the error of the MAS is guaranteed under the structurally balanced digraph has an oriented spanning tree. This differs from MFAILC results that have been proven based on matrix norm and do not require strong connectivity of digraphs. Moreover, the bounds for elements in the estimation-related matrices are presented, followed by providing a graph correlated sufficient condition to guide selection of control parameters. The results further extend to the control of asymmetric bipartite consensus tracking. The simulation examples verify the effectiveness of the distributed learning control protocols.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"10 \",\"pages\":\"227-238\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10465648/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10465648/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Finite-Time Asymmetric Bipartite Consensus for Multi-Agent Systems Using Data-Driven Iterative Learning Control
A general finite-time bipartite consensus problem is studied for multi-agent systems with completely unknown nonlinearities. An asymmetric bipartite consensus task is defined by introducing a proportional-related coefficient and a relationship-related index, which arranges that the agents reach an agreement with proportional modulus and opposite signs. With the cooperative-antagonistic interactions, a model-free adaptive bipartite iterative learning consensus protocol is proposed for promoting the accuracy of the performance within a finite-time interval. By employing the matrix transformation and property of the nonnegative matrix, the iteratively asymptotic convergence of the error of the MAS is guaranteed under the structurally balanced digraph has an oriented spanning tree. This differs from MFAILC results that have been proven based on matrix norm and do not require strong connectivity of digraphs. Moreover, the bounds for elements in the estimation-related matrices are presented, followed by providing a graph correlated sufficient condition to guide selection of control parameters. The results further extend to the control of asymmetric bipartite consensus tracking. The simulation examples verify the effectiveness of the distributed learning control protocols.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.