一类全非线性对称可积分演化方程的潜在性

Marianna Euler, Norbert Euler
{"title":"一类全非线性对称可积分演化方程的潜在性","authors":"Marianna Euler, Norbert Euler","doi":"arxiv-2403.05722","DOIUrl":null,"url":null,"abstract":"We consider here the class of fully-nonlinear symmetry-integrable third-order\nevolution equations in 1+1 dimensions that were proposed recently in {\\it Open\nCommunications in Nonlinear Mathematical Physics}, vol. 2, 216--228 (2022). In\nparticular, we report all zero-order and higher-order potentialisations for\nthis class of equations using their integrating factors (or multipliers) up to\norder four. Chains of connecting evolution equations are also obtained by\nmulti-potentialisations.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potentialisations of a class of fully-nonlinear symmetry-integrable evolution equations\",\"authors\":\"Marianna Euler, Norbert Euler\",\"doi\":\"arxiv-2403.05722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider here the class of fully-nonlinear symmetry-integrable third-order\\nevolution equations in 1+1 dimensions that were proposed recently in {\\\\it Open\\nCommunications in Nonlinear Mathematical Physics}, vol. 2, 216--228 (2022). In\\nparticular, we report all zero-order and higher-order potentialisations for\\nthis class of equations using their integrating factors (or multipliers) up to\\norder four. Chains of connecting evolution equations are also obtained by\\nmulti-potentialisations.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.05722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.05722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在此考虑最近在《非线性数学物理开放通讯》({it OpenCommunications in Nonlinear Mathematical Physics}, vol. 2, 216--228 (2022))中提出的一类 1+1 维完全非线性对称可积分三次旋转方程。特别是,我们报告了这一类方程的所有零阶和高阶势化,使用它们的积分因子(或乘数)直到四阶。通过多势垒化,我们还得到了连接演化方程链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potentialisations of a class of fully-nonlinear symmetry-integrable evolution equations
We consider here the class of fully-nonlinear symmetry-integrable third-order evolution equations in 1+1 dimensions that were proposed recently in {\it Open Communications in Nonlinear Mathematical Physics}, vol. 2, 216--228 (2022). In particular, we report all zero-order and higher-order potentialisations for this class of equations using their integrating factors (or multipliers) up to order four. Chains of connecting evolution equations are also obtained by multi-potentialisations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信