普外科视觉转换器:用于普外科手术的视频预训练基础模型

Samuel Schmidgall, Ji Woong Kim, Jeffery Jopling, Axel Krieger
{"title":"普外科视觉转换器:用于普外科手术的视频预训练基础模型","authors":"Samuel Schmidgall, Ji Woong Kim, Jeffery Jopling, Axel Krieger","doi":"arxiv-2403.05949","DOIUrl":null,"url":null,"abstract":"The absence of openly accessible data and specialized foundation models is a\nmajor barrier for computational research in surgery. Toward this, (i) we\nopen-source the largest dataset of general surgery videos to-date, consisting\nof 680 hours of surgical videos, including data from robotic and laparoscopic\ntechniques across 28 procedures; (ii) we propose a technique for video\npre-training a general surgery vision transformer (GSViT) on surgical videos\nbased on forward video prediction that can run in real-time for surgical\napplications, toward which we open-source the code and weights of GSViT; (iii)\nwe also release code and weights for procedure-specific fine-tuned versions of\nGSViT across 10 procedures; (iv) we demonstrate the performance of GSViT on the\nCholec80 phase annotation task, displaying improved performance over\nstate-of-the-art single frame predictors.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General surgery vision transformer: A video pre-trained foundation model for general surgery\",\"authors\":\"Samuel Schmidgall, Ji Woong Kim, Jeffery Jopling, Axel Krieger\",\"doi\":\"arxiv-2403.05949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The absence of openly accessible data and specialized foundation models is a\\nmajor barrier for computational research in surgery. Toward this, (i) we\\nopen-source the largest dataset of general surgery videos to-date, consisting\\nof 680 hours of surgical videos, including data from robotic and laparoscopic\\ntechniques across 28 procedures; (ii) we propose a technique for video\\npre-training a general surgery vision transformer (GSViT) on surgical videos\\nbased on forward video prediction that can run in real-time for surgical\\napplications, toward which we open-source the code and weights of GSViT; (iii)\\nwe also release code and weights for procedure-specific fine-tuned versions of\\nGSViT across 10 procedures; (iv) we demonstrate the performance of GSViT on the\\nCholec80 phase annotation task, displaying improved performance over\\nstate-of-the-art single frame predictors.\",\"PeriodicalId\":501572,\"journal\":{\"name\":\"arXiv - QuanBio - Tissues and Organs\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Tissues and Organs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.05949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.05949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

缺乏可公开访问的数据和专业基础模型是外科计算研究的一大障碍。为此,(i) 我们开源了迄今为止最大的普外科手术视频数据集,该数据集由 680 小时的手术视频组成,包括来自机器人和腹腔镜技术的 28 种手术数据;(ii) 我们提出了一种基于前向视频预测的普外科手术视觉转换器(GSViT)视频预训练技术,该技术可实时运行于手术应用中,为此我们开源了 GSViT 的代码和权重;(iv) 我们展示了 GSViT 在 Cholec80 阶段标注任务中的性能,其性能超过了最先进的单帧预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General surgery vision transformer: A video pre-trained foundation model for general surgery
The absence of openly accessible data and specialized foundation models is a major barrier for computational research in surgery. Toward this, (i) we open-source the largest dataset of general surgery videos to-date, consisting of 680 hours of surgical videos, including data from robotic and laparoscopic techniques across 28 procedures; (ii) we propose a technique for video pre-training a general surgery vision transformer (GSViT) on surgical videos based on forward video prediction that can run in real-time for surgical applications, toward which we open-source the code and weights of GSViT; (iii) we also release code and weights for procedure-specific fine-tuned versions of GSViT across 10 procedures; (iv) we demonstrate the performance of GSViT on the Cholec80 phase annotation task, displaying improved performance over state-of-the-art single frame predictors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信