Jerry Emmanuel, Itunuoluwa Isewon, Grace Olasehinde, Jelili Oyelade
{"title":"预测基于序列的宿主-病原体蛋白质-蛋白质相互作用的扩展特征表示技术","authors":"Jerry Emmanuel, Itunuoluwa Isewon, Grace Olasehinde, Jelili Oyelade","doi":"10.2174/0115748936286848240108074303","DOIUrl":null,"url":null,"abstract":"Background: The use of machine learning models in sequence-based Protein-Protein Interaction prediction typically requires the conversion of amino acid sequences into feature vectors. From the literature, two approaches have been used to achieve this transformation. These are referred to as the Independent Protein Feature (IPF) and Merged Protein Feature (MPF) extraction methods. As observed, studies have predominantly adopted the IPF approach, while others preferred the MPF method, in which host and pathogen sequences are concatenated before feature encoding. Objective: This presents the challenge of determining which approach should be adopted for improved HPPPI prediction. Therefore, this work introduces the Extended Protein Feature (EPF) method. Methods: The proposed method combines the predictive capabilities of IPF and MPF, extracting essential features, handling multicollinearity, and removing features with zero importance. EPF, IPF, and MPF were tested using bacteria, parasite, virus, and plant HPPPI datasets and were deployed to machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Naïve Bayes (NB), Logistic Regression (LR), and Deep Forest (DF). Results: The results indicated that MPF exhibited the lowest performance overall, whereas IPF performed better with decision tree-based models, such as RF and DF. In contrast, EPF demonstrated improved performance with SVM, LR, NB, and MLP and also yielded competitive results with DF and RF. Conclusion: In conclusion, the EPF approach developed in this study exhibits substantial improvements in four out of the six models evaluated. This suggests that EPF offers competitiveness with IPF and is particularly well-suited for traditional machine learning models.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extended Feature Representation Technique for Predicting Sequenced-based Host-pathogen Protein-protein Interaction\",\"authors\":\"Jerry Emmanuel, Itunuoluwa Isewon, Grace Olasehinde, Jelili Oyelade\",\"doi\":\"10.2174/0115748936286848240108074303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The use of machine learning models in sequence-based Protein-Protein Interaction prediction typically requires the conversion of amino acid sequences into feature vectors. From the literature, two approaches have been used to achieve this transformation. These are referred to as the Independent Protein Feature (IPF) and Merged Protein Feature (MPF) extraction methods. As observed, studies have predominantly adopted the IPF approach, while others preferred the MPF method, in which host and pathogen sequences are concatenated before feature encoding. Objective: This presents the challenge of determining which approach should be adopted for improved HPPPI prediction. Therefore, this work introduces the Extended Protein Feature (EPF) method. Methods: The proposed method combines the predictive capabilities of IPF and MPF, extracting essential features, handling multicollinearity, and removing features with zero importance. EPF, IPF, and MPF were tested using bacteria, parasite, virus, and plant HPPPI datasets and were deployed to machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Naïve Bayes (NB), Logistic Regression (LR), and Deep Forest (DF). Results: The results indicated that MPF exhibited the lowest performance overall, whereas IPF performed better with decision tree-based models, such as RF and DF. In contrast, EPF demonstrated improved performance with SVM, LR, NB, and MLP and also yielded competitive results with DF and RF. Conclusion: In conclusion, the EPF approach developed in this study exhibits substantial improvements in four out of the six models evaluated. This suggests that EPF offers competitiveness with IPF and is particularly well-suited for traditional machine learning models.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936286848240108074303\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936286848240108074303","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An Extended Feature Representation Technique for Predicting Sequenced-based Host-pathogen Protein-protein Interaction
Background: The use of machine learning models in sequence-based Protein-Protein Interaction prediction typically requires the conversion of amino acid sequences into feature vectors. From the literature, two approaches have been used to achieve this transformation. These are referred to as the Independent Protein Feature (IPF) and Merged Protein Feature (MPF) extraction methods. As observed, studies have predominantly adopted the IPF approach, while others preferred the MPF method, in which host and pathogen sequences are concatenated before feature encoding. Objective: This presents the challenge of determining which approach should be adopted for improved HPPPI prediction. Therefore, this work introduces the Extended Protein Feature (EPF) method. Methods: The proposed method combines the predictive capabilities of IPF and MPF, extracting essential features, handling multicollinearity, and removing features with zero importance. EPF, IPF, and MPF were tested using bacteria, parasite, virus, and plant HPPPI datasets and were deployed to machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Naïve Bayes (NB), Logistic Regression (LR), and Deep Forest (DF). Results: The results indicated that MPF exhibited the lowest performance overall, whereas IPF performed better with decision tree-based models, such as RF and DF. In contrast, EPF demonstrated improved performance with SVM, LR, NB, and MLP and also yielded competitive results with DF and RF. Conclusion: In conclusion, the EPF approach developed in this study exhibits substantial improvements in four out of the six models evaluated. This suggests that EPF offers competitiveness with IPF and is particularly well-suited for traditional machine learning models.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.