用最少的资源实现最好的性能借助 "可解释人工智能 "揭示用于 P300 检测的资源效率最高的卷积神经网络

Maohua Liu , Wenchong Shi , Liqiang Zhao , Fred R. Beyette Jr.
{"title":"用最少的资源实现最好的性能借助 \"可解释人工智能 \"揭示用于 P300 检测的资源效率最高的卷积神经网络","authors":"Maohua Liu ,&nbsp;Wenchong Shi ,&nbsp;Liqiang Zhao ,&nbsp;Fred R. Beyette Jr.","doi":"10.1016/j.mlwa.2024.100542","DOIUrl":null,"url":null,"abstract":"<div><p>Convolutional Neural Networks (CNNs) have shown remarkable prowess in detecting P300, an Event-Related Potential (ERP) crucial in Brain–Computer Interfaces (BCIs). Researchers persistently seek simple and efficient CNNs for P300 detection, exemplified by models like DeepConvNet, EEGNet, and SepConv1D. Noteworthy progress has been made, manifesting in reducing parameters from millions to hundreds while sustaining state-of-the-art performance. However, achieving further simplification or performance improvement beyond SepConv1D appears challenging due to inherent oversimplification. This study explores landmark CNNs and P300 data with the aid of Explainable AI, proposing a simpler yet superior-performing CNN architecture which incorporates (1) precise separable convolution for feature extraction of P300 data, (2) adaptive activation function tailored for P300 data, and (3) customized large learning rate schedules for training P300 data. Termed the Minimalist CNN for P300 detection (P300MCNN), this novel model is characterized by its requirement of the fewest filters and epochs to date, concurrently achieving best performance in cross-subject P300 detection. P300MCNN not only introduces groundbreaking concepts for CNN architectures in P300 detection but also showcases the importance of Explainable AI in demystifying the “black box” design of CNNs.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"16 ","pages":"Article 100542"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000185/pdfft?md5=f2f045fb988b74e8636d755e676a6c29&pid=1-s2.0-S2666827024000185-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Best performance with fewest resources: Unveiling the most resource-efficient Convolutional Neural Network for P300 detection with the aid of Explainable AI\",\"authors\":\"Maohua Liu ,&nbsp;Wenchong Shi ,&nbsp;Liqiang Zhao ,&nbsp;Fred R. Beyette Jr.\",\"doi\":\"10.1016/j.mlwa.2024.100542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convolutional Neural Networks (CNNs) have shown remarkable prowess in detecting P300, an Event-Related Potential (ERP) crucial in Brain–Computer Interfaces (BCIs). Researchers persistently seek simple and efficient CNNs for P300 detection, exemplified by models like DeepConvNet, EEGNet, and SepConv1D. Noteworthy progress has been made, manifesting in reducing parameters from millions to hundreds while sustaining state-of-the-art performance. However, achieving further simplification or performance improvement beyond SepConv1D appears challenging due to inherent oversimplification. This study explores landmark CNNs and P300 data with the aid of Explainable AI, proposing a simpler yet superior-performing CNN architecture which incorporates (1) precise separable convolution for feature extraction of P300 data, (2) adaptive activation function tailored for P300 data, and (3) customized large learning rate schedules for training P300 data. Termed the Minimalist CNN for P300 detection (P300MCNN), this novel model is characterized by its requirement of the fewest filters and epochs to date, concurrently achieving best performance in cross-subject P300 detection. P300MCNN not only introduces groundbreaking concepts for CNN architectures in P300 detection but also showcases the importance of Explainable AI in demystifying the “black box” design of CNNs.</p></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"16 \",\"pages\":\"Article 100542\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000185/pdfft?md5=f2f045fb988b74e8636d755e676a6c29&pid=1-s2.0-S2666827024000185-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)在检测 P300(脑机接口(BCI)中至关重要的事件相关电位(ERP))方面表现出了非凡的能力。研究人员一直在为 P300 检测寻找简单高效的 CNN,例如 DeepConvNet、EEGNet 和 SepConv1D 等模型。目前已经取得了显著进展,表现在将参数从数百万个减少到数百个,同时保持了最先进的性能。然而,由于固有的过度简化,在 SepConv1D 之外实现进一步简化或性能提升似乎具有挑战性。本研究借助 "可解释的人工智能"(Explainable AI)探索了具有里程碑意义的 CNN 和 P300 数据,提出了一种更简单但性能更优越的 CNN 架构,该架构包含:(1)用于 P300 数据特征提取的精确可分离卷积;(2)为 P300 数据量身定制的自适应激活函数;以及(3)用于训练 P300 数据的定制化大学习率计划。这种新型模型被称为用于 P300 检测的极简 CNN(P300MCNN),其特点是要求使用迄今为止最少的过滤器和历时,同时在跨受试者 P300 检测中取得最佳性能。P300MCNN 不仅为 P300 检测中的 CNN 架构引入了突破性概念,还展示了可解释人工智能在揭开 CNN "黑箱 "设计神秘面纱方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Best performance with fewest resources: Unveiling the most resource-efficient Convolutional Neural Network for P300 detection with the aid of Explainable AI

Convolutional Neural Networks (CNNs) have shown remarkable prowess in detecting P300, an Event-Related Potential (ERP) crucial in Brain–Computer Interfaces (BCIs). Researchers persistently seek simple and efficient CNNs for P300 detection, exemplified by models like DeepConvNet, EEGNet, and SepConv1D. Noteworthy progress has been made, manifesting in reducing parameters from millions to hundreds while sustaining state-of-the-art performance. However, achieving further simplification or performance improvement beyond SepConv1D appears challenging due to inherent oversimplification. This study explores landmark CNNs and P300 data with the aid of Explainable AI, proposing a simpler yet superior-performing CNN architecture which incorporates (1) precise separable convolution for feature extraction of P300 data, (2) adaptive activation function tailored for P300 data, and (3) customized large learning rate schedules for training P300 data. Termed the Minimalist CNN for P300 detection (P300MCNN), this novel model is characterized by its requirement of the fewest filters and epochs to date, concurrently achieving best performance in cross-subject P300 detection. P300MCNN not only introduces groundbreaking concepts for CNN architectures in P300 detection but also showcases the importance of Explainable AI in demystifying the “black box” design of CNNs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信