{"title":"用实验和理论方法研究 Pt/[Pt/Co] $${}_{math\\bf{4}}$$ /Pt 薄膜的磁性、结构和电子特性","authors":"Taner Kalayci","doi":"10.3103/S0027134923060085","DOIUrl":null,"url":null,"abstract":"<p>In this study, the magnetic, structural, and electronic properties of Pt/[Pt/Co]<span>\\({}_{4}\\)</span>/Pt thin film was investigated both experimentally and theoretically. The effects of crystal orientation on magnetic behavior in the primitive cell were investigated via the first-principles methods. Band structures, total and partial density of states was calculated as the electronic properties. Magneto-optical Kerr effect and ferromagnetic resonance techniques were carried out to determine magnetic properties. The magnetic behavior of Pt/[Pt/Co]<span>\\({}_{4}\\)</span>/Pt in microscopic framework is revealed by the spin asymmetry in the density of states around the Fermi level. The perpendicular magnetic anisotropy is found to be more favorable for the Pt/[Pt/Co]<span>\\({}_{4}\\)</span>/Pt with (111) orientation. It was seen that the crystal orientation of Pt/[Pt/Co]<span>\\({}_{4}\\)</span>/Pt has a critical role on the magnetic properties according to the band magnetism calculations.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"78 6","pages":"839 - 845"},"PeriodicalIF":0.4000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Magnetic, Structural, and Electronic Properties of Pt/[Pt/Co]\\\\({}_{\\\\mathbf{4}}\\\\)/Pt Thin Film by Experimental and Theoretical Methods\",\"authors\":\"Taner Kalayci\",\"doi\":\"10.3103/S0027134923060085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the magnetic, structural, and electronic properties of Pt/[Pt/Co]<span>\\\\({}_{4}\\\\)</span>/Pt thin film was investigated both experimentally and theoretically. The effects of crystal orientation on magnetic behavior in the primitive cell were investigated via the first-principles methods. Band structures, total and partial density of states was calculated as the electronic properties. Magneto-optical Kerr effect and ferromagnetic resonance techniques were carried out to determine magnetic properties. The magnetic behavior of Pt/[Pt/Co]<span>\\\\({}_{4}\\\\)</span>/Pt in microscopic framework is revealed by the spin asymmetry in the density of states around the Fermi level. The perpendicular magnetic anisotropy is found to be more favorable for the Pt/[Pt/Co]<span>\\\\({}_{4}\\\\)</span>/Pt with (111) orientation. It was seen that the crystal orientation of Pt/[Pt/Co]<span>\\\\({}_{4}\\\\)</span>/Pt has a critical role on the magnetic properties according to the band magnetism calculations.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"78 6\",\"pages\":\"839 - 845\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134923060085\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134923060085","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of the Magnetic, Structural, and Electronic Properties of Pt/[Pt/Co]\({}_{\mathbf{4}}\)/Pt Thin Film by Experimental and Theoretical Methods
In this study, the magnetic, structural, and electronic properties of Pt/[Pt/Co]\({}_{4}\)/Pt thin film was investigated both experimentally and theoretically. The effects of crystal orientation on magnetic behavior in the primitive cell were investigated via the first-principles methods. Band structures, total and partial density of states was calculated as the electronic properties. Magneto-optical Kerr effect and ferromagnetic resonance techniques were carried out to determine magnetic properties. The magnetic behavior of Pt/[Pt/Co]\({}_{4}\)/Pt in microscopic framework is revealed by the spin asymmetry in the density of states around the Fermi level. The perpendicular magnetic anisotropy is found to be more favorable for the Pt/[Pt/Co]\({}_{4}\)/Pt with (111) orientation. It was seen that the crystal orientation of Pt/[Pt/Co]\({}_{4}\)/Pt has a critical role on the magnetic properties according to the band magnetism calculations.
期刊介绍:
Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.