Capri D. Jolliffe, Robert D. McCauley, Alexander N. Gavrilov
{"title":"鲸鱼按照自己的曲调唱歌吗?比较东印度洋侏儒蓝鲸鸣唱事件内部和之间的可变性","authors":"Capri D. Jolliffe, Robert D. McCauley, Alexander N. Gavrilov","doi":"10.1007/s40857-024-00314-2","DOIUrl":null,"url":null,"abstract":"<div><p>Acoustic data from the Perth Canyon, Western Australia, were collected for the 2017 northern migration allowing for detailed acoustic analysis of eastern Indian Ocean pygmy blue (EIOPB) whale songs within a migratory season to explore fine-scale variability in song production. An algorithm was used to follow the unit II signal in time, tracking the change in frequency over the duration of the signal and enabling a comparison of song unit production within and between singing bouts. The results of this analysis indicate that units from within the same song event have relatively consistent characteristics but vary between song events, suggesting it is possible that individual whales may have distinct vocal characteristics. The presence of breaks within a unit was identified as a significant level of variability in song production within the 2017 data set and was seen to increase throughout the season. It is hypothesised that unit breaks may play a role in intra-species communication as well as represent a novel variation to song production that increases song complexity and thus may increase individual fitness through sexual selection.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":"52 2","pages":"131 - 144"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do Whales Sing to Their Own Tune? Comparing the Variability Within and Between Song Events of the Eastern Indian Ocean Pygmy Blue Whale\",\"authors\":\"Capri D. Jolliffe, Robert D. McCauley, Alexander N. Gavrilov\",\"doi\":\"10.1007/s40857-024-00314-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acoustic data from the Perth Canyon, Western Australia, were collected for the 2017 northern migration allowing for detailed acoustic analysis of eastern Indian Ocean pygmy blue (EIOPB) whale songs within a migratory season to explore fine-scale variability in song production. An algorithm was used to follow the unit II signal in time, tracking the change in frequency over the duration of the signal and enabling a comparison of song unit production within and between singing bouts. The results of this analysis indicate that units from within the same song event have relatively consistent characteristics but vary between song events, suggesting it is possible that individual whales may have distinct vocal characteristics. The presence of breaks within a unit was identified as a significant level of variability in song production within the 2017 data set and was seen to increase throughout the season. It is hypothesised that unit breaks may play a role in intra-species communication as well as represent a novel variation to song production that increases song complexity and thus may increase individual fitness through sexual selection.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":\"52 2\",\"pages\":\"131 - 144\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-024-00314-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-024-00314-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Do Whales Sing to Their Own Tune? Comparing the Variability Within and Between Song Events of the Eastern Indian Ocean Pygmy Blue Whale
Acoustic data from the Perth Canyon, Western Australia, were collected for the 2017 northern migration allowing for detailed acoustic analysis of eastern Indian Ocean pygmy blue (EIOPB) whale songs within a migratory season to explore fine-scale variability in song production. An algorithm was used to follow the unit II signal in time, tracking the change in frequency over the duration of the signal and enabling a comparison of song unit production within and between singing bouts. The results of this analysis indicate that units from within the same song event have relatively consistent characteristics but vary between song events, suggesting it is possible that individual whales may have distinct vocal characteristics. The presence of breaks within a unit was identified as a significant level of variability in song production within the 2017 data set and was seen to increase throughout the season. It is hypothesised that unit breaks may play a role in intra-species communication as well as represent a novel variation to song production that increases song complexity and thus may increase individual fitness through sexual selection.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.