{"title":"子转移的测量转移和 S-adic 发展","authors":"NICOLAS BÉDARIDE, ARNAUD HILION, MARTIN LUSTIG","doi":"10.1017/etds.2024.19","DOIUrl":null,"url":null,"abstract":"<p>Based on previous work of the authors, to any <span>S</span>-adic development of a subshift <span>X</span> a ‘directive sequence’ of commutative diagrams is associated, which consists at every level <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$n \\geq 0$</span></span></img></span></span> of the measure cone and the letter frequency cone of the level subshift <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$X_n$</span></span></img></span></span> associated canonically to the given <span>S</span>-adic development. The issuing rich picture enables one to deduce results about <span>X</span> with unexpected directness. For instance, we exhibit a large class of minimal subshifts with entropy zero that all have infinitely many ergodic probability measures. As a side result, we also exhibit, for any integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d \\geq 2$</span></span></img></span></span>, an <span>S</span>-adic development of a minimal, aperiodic, uniquely ergodic subshift <span>X</span>, where all level alphabets <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal A_n$</span></span></img></span></span> have cardinality <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$d,$</span></span></img></span></span> while none of the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$d-2$</span></span></img></span></span> bottom level morphisms is recognizable in its level subshift <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$X_n \\subseteq \\mathcal A_n^{\\mathbb {Z}}$</span></span></img></span></span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measure transfer and S-adic developments for subshifts\",\"authors\":\"NICOLAS BÉDARIDE, ARNAUD HILION, MARTIN LUSTIG\",\"doi\":\"10.1017/etds.2024.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on previous work of the authors, to any <span>S</span>-adic development of a subshift <span>X</span> a ‘directive sequence’ of commutative diagrams is associated, which consists at every level <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n \\\\geq 0$</span></span></img></span></span> of the measure cone and the letter frequency cone of the level subshift <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$X_n$</span></span></img></span></span> associated canonically to the given <span>S</span>-adic development. The issuing rich picture enables one to deduce results about <span>X</span> with unexpected directness. For instance, we exhibit a large class of minimal subshifts with entropy zero that all have infinitely many ergodic probability measures. As a side result, we also exhibit, for any integer <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d \\\\geq 2$</span></span></img></span></span>, an <span>S</span>-adic development of a minimal, aperiodic, uniquely ergodic subshift <span>X</span>, where all level alphabets <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal A_n$</span></span></img></span></span> have cardinality <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d,$</span></span></img></span></span> while none of the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d-2$</span></span></img></span></span> bottom level morphisms is recognizable in its level subshift <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240309085744099-0060:S0143385724000191:S0143385724000191_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$X_n \\\\subseteq \\\\mathcal A_n^{\\\\mathbb {Z}}$</span></span></img></span></span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measure transfer and S-adic developments for subshifts
Based on previous work of the authors, to any S-adic development of a subshift X a ‘directive sequence’ of commutative diagrams is associated, which consists at every level $n \geq 0$ of the measure cone and the letter frequency cone of the level subshift $X_n$ associated canonically to the given S-adic development. The issuing rich picture enables one to deduce results about X with unexpected directness. For instance, we exhibit a large class of minimal subshifts with entropy zero that all have infinitely many ergodic probability measures. As a side result, we also exhibit, for any integer $d \geq 2$, an S-adic development of a minimal, aperiodic, uniquely ergodic subshift X, where all level alphabets $\mathcal A_n$ have cardinality $d,$ while none of the $d-2$ bottom level morphisms is recognizable in its level subshift $X_n \subseteq \mathcal A_n^{\mathbb {Z}}$.