针对重尾噪声随机优化的梯度剪切算法

Pub Date : 2024-03-11 DOI:10.1134/S1064562423701144
M. Danilova
{"title":"针对重尾噪声随机优化的梯度剪切算法","authors":"M. Danilova","doi":"10.1134/S1064562423701144","DOIUrl":null,"url":null,"abstract":"<p>This article provides a survey of the results of several research studies [12–14, 26], in which open questions related to the high-probability convergence analysis of stochastic first-order optimization methods under mild assumptions on the noise were gradually addressed. In the beginning, we introduce the concept of gradient clipping, which plays a pivotal role in the development of stochastic methods for successful operation in the case of heavy-tailed distributions. Next, we examine the importance of obtaining the high-probability convergence guarantees and their connection with in-expectation convergence guarantees. The concluding sections of the article are dedicated to presenting the primary findings related to minimization problems and the results of numerical experiments.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms with Gradient Clipping for Stochastic Optimization with Heavy-Tailed Noise\",\"authors\":\"M. Danilova\",\"doi\":\"10.1134/S1064562423701144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article provides a survey of the results of several research studies [12–14, 26], in which open questions related to the high-probability convergence analysis of stochastic first-order optimization methods under mild assumptions on the noise were gradually addressed. In the beginning, we introduce the concept of gradient clipping, which plays a pivotal role in the development of stochastic methods for successful operation in the case of heavy-tailed distributions. Next, we examine the importance of obtaining the high-probability convergence guarantees and their connection with in-expectation convergence guarantees. The concluding sections of the article are dedicated to presenting the primary findings related to minimization problems and the results of numerical experiments.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文概述了几项研究的成果[12-14, 26],在这些研究中,与噪声温和假设下随机一阶优化方法的高概率收敛分析有关的开放性问题逐渐得到了解决。首先,我们介绍梯度削波的概念,它对随机方法在重尾分布情况下成功运行的发展起着关键作用。接下来,我们探讨了获得高概率收敛保证的重要性及其与预期内收敛保证的联系。文章的结尾部分专门介绍了与最小化问题相关的主要发现和数值实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Algorithms with Gradient Clipping for Stochastic Optimization with Heavy-Tailed Noise

分享
查看原文
Algorithms with Gradient Clipping for Stochastic Optimization with Heavy-Tailed Noise

This article provides a survey of the results of several research studies [12–14, 26], in which open questions related to the high-probability convergence analysis of stochastic first-order optimization methods under mild assumptions on the noise were gradually addressed. In the beginning, we introduce the concept of gradient clipping, which plays a pivotal role in the development of stochastic methods for successful operation in the case of heavy-tailed distributions. Next, we examine the importance of obtaining the high-probability convergence guarantees and their connection with in-expectation convergence guarantees. The concluding sections of the article are dedicated to presenting the primary findings related to minimization problems and the results of numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信