$${{\mathbb{R}}^2$$中具有密度依赖性扩散的完全抛物线间接追逐-入侵捕食者-猎物系统解的有界性

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Fugeng Zeng, Dongxiu Wang, Lei Huang
{"title":"$${{\\mathbb{R}}^2$$中具有密度依赖性扩散的完全抛物线间接追逐-入侵捕食者-猎物系统解的有界性","authors":"Fugeng Zeng, Dongxiu Wang, Lei Huang","doi":"10.1007/s44198-024-00177-1","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with a fully parabolic indirect pursuit–evasion predator–prey system with density-dependent diffusion <span>\\(u_{t}=\\Delta (\\psi _1(w)u)+u(\\lambda -u+\\alpha v), v_{t}=\\Delta (\\psi _2(z) v)+v(\\mu -v-\\beta u), w_{t}=\\Delta w -w+v, z_{t}=\\Delta z-z+u\\)</span> under a smooth bounded domain <span>\\(\\Omega \\subset {\\mathbb{R}}^2\\)</span> with homogeneous Neumann boundary conditions, where the parameters <span>\\(\\lambda , \\mu , \\alpha\\)</span> and <span>\\(\\beta\\)</span> are assumed to be positive. Through the establishment of appropriate conditions for the density-dependent diffusion functions <span>\\(\\psi _1(w)\\)</span> and <span>\\(\\psi _2(z),\\)</span> it is revealed that a unique classical solution exists for the corresponding initial-boundary problem, which remains uniformly bounded over time.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"35 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of Solutions to a Fully Parabolic Indirect Pursuit–Evasion Predator–Prey System with Density-Dependent Diffusion in $${{\\\\mathbb{R}}}^2$$\",\"authors\":\"Fugeng Zeng, Dongxiu Wang, Lei Huang\",\"doi\":\"10.1007/s44198-024-00177-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper deals with a fully parabolic indirect pursuit–evasion predator–prey system with density-dependent diffusion <span>\\\\(u_{t}=\\\\Delta (\\\\psi _1(w)u)+u(\\\\lambda -u+\\\\alpha v), v_{t}=\\\\Delta (\\\\psi _2(z) v)+v(\\\\mu -v-\\\\beta u), w_{t}=\\\\Delta w -w+v, z_{t}=\\\\Delta z-z+u\\\\)</span> under a smooth bounded domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb{R}}^2\\\\)</span> with homogeneous Neumann boundary conditions, where the parameters <span>\\\\(\\\\lambda , \\\\mu , \\\\alpha\\\\)</span> and <span>\\\\(\\\\beta\\\\)</span> are assumed to be positive. Through the establishment of appropriate conditions for the density-dependent diffusion functions <span>\\\\(\\\\psi _1(w)\\\\)</span> and <span>\\\\(\\\\psi _2(z),\\\\)</span> it is revealed that a unique classical solution exists for the corresponding initial-boundary problem, which remains uniformly bounded over time.</p>\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-024-00177-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00177-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一个完全抛物线的间接追逐-逃避捕食者-猎物系统,该系统具有密度依赖性扩散(u_{t}=\Delta (\psi _1(w)u)+u(\lambda -u+\alpha v),v_{t}=\Delta (\psi _2(z) v)+v(\mu -v-\beta u))、w_{t}=\Delta w -w+v, z_{t}=\Delta z-z+u\) 在光滑有界域 \(\Omega \subset {mathbb{R}}^2\)下,具有均相 Neumann 边界条件,其中参数 \(\lambda , \mu , \alpha\) 和 \(\beta\) 被假定为正值。通过为与密度相关的扩散函数 (\psi _1(w)\)和 (\psi _2(z),\)建立适当的条件,可以发现相应的初始边界问题存在唯一的经典解,并且随着时间的推移保持均匀边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of Solutions to a Fully Parabolic Indirect Pursuit–Evasion Predator–Prey System with Density-Dependent Diffusion in $${{\mathbb{R}}}^2$$

This paper deals with a fully parabolic indirect pursuit–evasion predator–prey system with density-dependent diffusion \(u_{t}=\Delta (\psi _1(w)u)+u(\lambda -u+\alpha v), v_{t}=\Delta (\psi _2(z) v)+v(\mu -v-\beta u), w_{t}=\Delta w -w+v, z_{t}=\Delta z-z+u\) under a smooth bounded domain \(\Omega \subset {\mathbb{R}}^2\) with homogeneous Neumann boundary conditions, where the parameters \(\lambda , \mu , \alpha\) and \(\beta\) are assumed to be positive. Through the establishment of appropriate conditions for the density-dependent diffusion functions \(\psi _1(w)\) and \(\psi _2(z),\) it is revealed that a unique classical solution exists for the corresponding initial-boundary problem, which remains uniformly bounded over time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信