基于自适应神经网络滑模控制的车辆防抱死系统研究

4区 工程技术 Q1 Mathematics
Yaoping Li, Han Li
{"title":"基于自适应神经网络滑模控制的车辆防抱死系统研究","authors":"Yaoping Li, Han Li","doi":"10.1155/2024/3359266","DOIUrl":null,"url":null,"abstract":"Vehicle antilock systems play a very important role in the stability and reliability during vehicle braking. Due to the complexity of the braking process, antilock braking system (ABS) usually face the problems such as nonlinearity, time-varying, and uncertain parameter modeling. Thus, aiming at the parameter model uncertainty problem of ABS, an adaptive neural network sliding mode controller (ADRBF-SMC) is designed in this paper. On this basis, establishing the quarter-vehicle model and the seven-degree-of-freedom vehicle model, and treating the difference between the two models as a kind of disturbance, carrying out vehicle braking performance simulation experiments to analyze the variation of braking performance parameters such as vehicle and wheel speeds, slip ratio, braking distance, braking torque, under the three cases of adaptive neural network sliding mode controller, traditional sliding mode controller, and no control. Simulation results show that the adaptive neural network sliding mode controller (ADRBF-SMC) proposed in this paper can play an effective control role in both vehicle dynamics models. In addition, the control method proposed in this paper has stronger anti-interference capability and higher robustness compared with the sliding mode controller (SMC).","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Vehicle Antilock System Based on Adaptive Neural Network Sliding Mode Control\",\"authors\":\"Yaoping Li, Han Li\",\"doi\":\"10.1155/2024/3359266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle antilock systems play a very important role in the stability and reliability during vehicle braking. Due to the complexity of the braking process, antilock braking system (ABS) usually face the problems such as nonlinearity, time-varying, and uncertain parameter modeling. Thus, aiming at the parameter model uncertainty problem of ABS, an adaptive neural network sliding mode controller (ADRBF-SMC) is designed in this paper. On this basis, establishing the quarter-vehicle model and the seven-degree-of-freedom vehicle model, and treating the difference between the two models as a kind of disturbance, carrying out vehicle braking performance simulation experiments to analyze the variation of braking performance parameters such as vehicle and wheel speeds, slip ratio, braking distance, braking torque, under the three cases of adaptive neural network sliding mode controller, traditional sliding mode controller, and no control. Simulation results show that the adaptive neural network sliding mode controller (ADRBF-SMC) proposed in this paper can play an effective control role in both vehicle dynamics models. In addition, the control method proposed in this paper has stronger anti-interference capability and higher robustness compared with the sliding mode controller (SMC).\",\"PeriodicalId\":18319,\"journal\":{\"name\":\"Mathematical Problems in Engineering\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Problems in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3359266\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3359266","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

汽车防抱死系统对汽车制动过程中的稳定性和可靠性起着非常重要的作用。由于制动过程的复杂性,防抱死制动系统(ABS)通常面临非线性、时变和参数建模不确定等问题。因此,针对防抱死制动系统的参数模型不确定性问题,本文设计了一种自适应神经网络滑模控制器(ADRBF-SMC)。在此基础上,建立四分之一车辆模型和七自由度车辆模型,并将两个模型之间的差异视为一种扰动,进行车辆制动性能仿真实验,分析在自适应神经网络滑模控制器、传统滑模控制器和无控制三种情况下,车辆和车轮速度、滑移比、制动距离、制动力矩等制动性能参数的变化情况。仿真结果表明,本文提出的自适应神经网络滑模控制器(ADRBF-SMC)在两种车辆动力学模型中都能发挥有效的控制作用。此外,与滑模控制器(SMC)相比,本文提出的控制方法具有更强的抗干扰能力和更高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Vehicle Antilock System Based on Adaptive Neural Network Sliding Mode Control
Vehicle antilock systems play a very important role in the stability and reliability during vehicle braking. Due to the complexity of the braking process, antilock braking system (ABS) usually face the problems such as nonlinearity, time-varying, and uncertain parameter modeling. Thus, aiming at the parameter model uncertainty problem of ABS, an adaptive neural network sliding mode controller (ADRBF-SMC) is designed in this paper. On this basis, establishing the quarter-vehicle model and the seven-degree-of-freedom vehicle model, and treating the difference between the two models as a kind of disturbance, carrying out vehicle braking performance simulation experiments to analyze the variation of braking performance parameters such as vehicle and wheel speeds, slip ratio, braking distance, braking torque, under the three cases of adaptive neural network sliding mode controller, traditional sliding mode controller, and no control. Simulation results show that the adaptive neural network sliding mode controller (ADRBF-SMC) proposed in this paper can play an effective control role in both vehicle dynamics models. In addition, the control method proposed in this paper has stronger anti-interference capability and higher robustness compared with the sliding mode controller (SMC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Problems in Engineering
Mathematical Problems in Engineering 工程技术-工程:综合
CiteScore
4.00
自引率
0.00%
发文量
2853
审稿时长
4.2 months
期刊介绍: Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信