$$H^2({\mathbb {D}}^3)$$ 子模组中限制算子的三元组和边缘算子对的弗雷德霍姆指数

IF 0.7 4区 数学 Q2 MATHEMATICS
Xilin Nie, Anjian Xu
{"title":"$$H^2({\\mathbb {D}}^3)$$ 子模组中限制算子的三元组和边缘算子对的弗雷德霍姆指数","authors":"Xilin Nie, Anjian Xu","doi":"10.1007/s11785-024-01498-1","DOIUrl":null,"url":null,"abstract":"<p>For a submodule <span>\\({\\mathcal {M}}\\)</span> in Hardy module <span>\\(H^2({\\mathbb {D}}^n)\\)</span> on the unit polydisc in <span>\\(\\mathbb {C}^{n}\\)</span>, we define the <span>\\(n-1\\)</span> tuple of fringe operators <span>\\(\\textbf{F}=(F_{1},F_{2},\\ldots ,F_{n-1})\\)</span> and the <i>n</i> tuple of restriction operators <span>\\(\\textbf{R}=(R_{z_{1}},R_{z_{2}},\\ldots , R_{z_{n}})\\)</span> with respect to <span>\\({\\mathcal {M}}\\)</span>. In this paper, for the case <span>\\(n=3\\)</span>, it is shown that the fringe operators <span>\\(\\textbf{F}\\)</span> are Fredholm if and only if the tuple <span>\\(\\textbf{R}-\\lambda \\)</span> is Fredholm, where <span>\\(\\lambda \\in {\\mathbb {D}}^3\\)</span>, and moreover <span>\\(ind(\\textbf{F})=-ind(\\mathbf{R-\\lambda })\\)</span>, which answer a question of Yang (Proc Am Math Soc 131 (2):533–541, 2003) partly and generalize a result of Luo et al. (J Math Anal Appl 465(1):531–546, 2018) in the case <span>\\(n=2\\)</span>. Finally, we also discuss the difference quotient operators in <span>\\(H^2({\\mathbb {D}}^n)\\)</span>, and apply them to explore the relationship between the fringe operators and compression operators on quotient module.\n</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"68 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fredholm Index of 3-Tuple of Restriction Operators and the Pair of Fringe Operators for Submodules in $$H^2({\\\\mathbb {D}}^3)$$\",\"authors\":\"Xilin Nie, Anjian Xu\",\"doi\":\"10.1007/s11785-024-01498-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a submodule <span>\\\\({\\\\mathcal {M}}\\\\)</span> in Hardy module <span>\\\\(H^2({\\\\mathbb {D}}^n)\\\\)</span> on the unit polydisc in <span>\\\\(\\\\mathbb {C}^{n}\\\\)</span>, we define the <span>\\\\(n-1\\\\)</span> tuple of fringe operators <span>\\\\(\\\\textbf{F}=(F_{1},F_{2},\\\\ldots ,F_{n-1})\\\\)</span> and the <i>n</i> tuple of restriction operators <span>\\\\(\\\\textbf{R}=(R_{z_{1}},R_{z_{2}},\\\\ldots , R_{z_{n}})\\\\)</span> with respect to <span>\\\\({\\\\mathcal {M}}\\\\)</span>. In this paper, for the case <span>\\\\(n=3\\\\)</span>, it is shown that the fringe operators <span>\\\\(\\\\textbf{F}\\\\)</span> are Fredholm if and only if the tuple <span>\\\\(\\\\textbf{R}-\\\\lambda \\\\)</span> is Fredholm, where <span>\\\\(\\\\lambda \\\\in {\\\\mathbb {D}}^3\\\\)</span>, and moreover <span>\\\\(ind(\\\\textbf{F})=-ind(\\\\mathbf{R-\\\\lambda })\\\\)</span>, which answer a question of Yang (Proc Am Math Soc 131 (2):533–541, 2003) partly and generalize a result of Luo et al. (J Math Anal Appl 465(1):531–546, 2018) in the case <span>\\\\(n=2\\\\)</span>. Finally, we also discuss the difference quotient operators in <span>\\\\(H^2({\\\\mathbb {D}}^n)\\\\)</span>, and apply them to explore the relationship between the fringe operators and compression operators on quotient module.\\n</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01498-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01498-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 \(\mathbb {C}^{n}\) 中单位多圆盘上的哈代模块 \(H^2({\mathbb {D}}^n))中的子模块 \({\mathcal {M}}\), 我们定义了边缘算子的 \(n-1\) 元组 \(\textbf{F}=(F_{1}、)和 n 个限制算子元组(textbf{R}=(R_{z_{1}},R_{z_{2}},\ldots ,R_{z_{n}})。本文证明,对于 \(n=3\) 的情况,只有当 \(textbf{R}-\lambda \) 元组是弗雷德霍尔姆时,边缘算子 \(\textbf{F}\) 才是弗雷德霍尔姆、其中 \(\lambda \in {\mathbb {D}}^3\), and moreover \(ind(\textbf{F})=-ind(\mathbf{R-\lambda })\), which answer a question of Yang (Proc Am Math Soc 131 (2):533-541, 2003)的一个问题,并部分地推广了 Luo et al.(J Math Anal Appl 465(1):531-546, 2018) 的结果。最后,我们还讨论了 \(H^2({\mathbb {D}}^n)\) 中的差商算子,并应用它们探索了商模块上的边缘算子与压缩算子之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fredholm Index of 3-Tuple of Restriction Operators and the Pair of Fringe Operators for Submodules in $$H^2({\mathbb {D}}^3)$$

For a submodule \({\mathcal {M}}\) in Hardy module \(H^2({\mathbb {D}}^n)\) on the unit polydisc in \(\mathbb {C}^{n}\), we define the \(n-1\) tuple of fringe operators \(\textbf{F}=(F_{1},F_{2},\ldots ,F_{n-1})\) and the n tuple of restriction operators \(\textbf{R}=(R_{z_{1}},R_{z_{2}},\ldots , R_{z_{n}})\) with respect to \({\mathcal {M}}\). In this paper, for the case \(n=3\), it is shown that the fringe operators \(\textbf{F}\) are Fredholm if and only if the tuple \(\textbf{R}-\lambda \) is Fredholm, where \(\lambda \in {\mathbb {D}}^3\), and moreover \(ind(\textbf{F})=-ind(\mathbf{R-\lambda })\), which answer a question of Yang (Proc Am Math Soc 131 (2):533–541, 2003) partly and generalize a result of Luo et al. (J Math Anal Appl 465(1):531–546, 2018) in the case \(n=2\). Finally, we also discuss the difference quotient operators in \(H^2({\mathbb {D}}^n)\), and apply them to explore the relationship between the fringe operators and compression operators on quotient module.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信