无梯度神经拓扑优化

Gawel Kus, Miguel A. Bessa
{"title":"无梯度神经拓扑优化","authors":"Gawel Kus, Miguel A. Bessa","doi":"arxiv-2403.04937","DOIUrl":null,"url":null,"abstract":"Gradient-free optimizers allow for tackling problems regardless of the\nsmoothness or differentiability of their objective function, but they require\nmany more iterations to converge when compared to gradient-based algorithms.\nThis has made them unviable for topology optimization due to the high\ncomputational cost per iteration and high dimensionality of these problems. We\npropose a pre-trained neural reparameterization strategy that leads to at least\none order of magnitude decrease in iteration count when optimizing the designs\nin latent space, as opposed to the conventional approach without latent\nreparameterization. We demonstrate this via extensive computational experiments\nin- and out-of-distribution with the training data. Although gradient-based\ntopology optimization is still more efficient for differentiable problems, such\nas compliance optimization of structures, we believe this work will open up a\nnew path for problems where gradient information is not readily available (e.g.\nfracture).","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient-free neural topology optimization\",\"authors\":\"Gawel Kus, Miguel A. Bessa\",\"doi\":\"arxiv-2403.04937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gradient-free optimizers allow for tackling problems regardless of the\\nsmoothness or differentiability of their objective function, but they require\\nmany more iterations to converge when compared to gradient-based algorithms.\\nThis has made them unviable for topology optimization due to the high\\ncomputational cost per iteration and high dimensionality of these problems. We\\npropose a pre-trained neural reparameterization strategy that leads to at least\\none order of magnitude decrease in iteration count when optimizing the designs\\nin latent space, as opposed to the conventional approach without latent\\nreparameterization. We demonstrate this via extensive computational experiments\\nin- and out-of-distribution with the training data. Although gradient-based\\ntopology optimization is still more efficient for differentiable problems, such\\nas compliance optimization of structures, we believe this work will open up a\\nnew path for problems where gradient information is not readily available (e.g.\\nfracture).\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.04937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.04937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无梯度优化器可以不受目标函数的平滑度或可微分性的限制来处理问题,但与基于梯度的算法相比,它们需要更多的迭代次数才能收敛。我们提出了一种预先训练的神经重参数化策略,与传统的不进行潜在参数化的方法相比,这种策略在优化潜在空间的设计时至少能将迭代次数减少一个数量级。我们通过对训练数据进行广泛的分布内和分布外计算实验证明了这一点。虽然基于梯度的拓扑优化对于可微分问题(如结构的顺应性优化)仍然更有效,但我们相信这项工作将为梯度信息不容易获得的问题(如断裂)开辟一条新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient-free neural topology optimization
Gradient-free optimizers allow for tackling problems regardless of the smoothness or differentiability of their objective function, but they require many more iterations to converge when compared to gradient-based algorithms. This has made them unviable for topology optimization due to the high computational cost per iteration and high dimensionality of these problems. We propose a pre-trained neural reparameterization strategy that leads to at least one order of magnitude decrease in iteration count when optimizing the designs in latent space, as opposed to the conventional approach without latent reparameterization. We demonstrate this via extensive computational experiments in- and out-of-distribution with the training data. Although gradient-based topology optimization is still more efficient for differentiable problems, such as compliance optimization of structures, we believe this work will open up a new path for problems where gradient information is not readily available (e.g. fracture).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信