{"title":"用结构网格对任意倾斜界面的失效进行建模的栅格方法","authors":"","doi":"10.1007/s00466-024-02456-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper presents an approach to evaluate the failure of arbitrarily inclined interfaces using FE models with structured spatial discretization, providing accurate prediction of crack propagation along paths known a priori that are not constrained to the element boundaries. The combination of algorithms for the generation of structured discretization of representative polycrystalline microstructures with novel cohesive element formulations allow modelling the failure of complex topologies along rasterised boundaries, with noticeably higher computational efficiency and comparable accuracy. Two formulations of raster cohesive elements are presented, adopting either elastic-brittle or Tvergaard–Hutchinson traction separation laws. The formulations proposed are first validated comparing the failure of the interface within bi-crystal structures discretised using hexahedral elements either within a structured mesh (i.e. with rasterised boundaries) or an unstructured mesh (i.e. with planar boundary). Subsequently, the effectiveness of the formulations is demonstrated comparing the inter-granular crack propagation within complex polycrystalline microstructures. The behaviour of the novel cohesive element formulation in structured meshes consisting of regular hexahedral elements is in excellent agreement with the deformation and failure of classic cohesive element formulations placed along the planar boundaries of unstructured meshes consisting of tetrahedral elements. The higher computational cost of the raster cohesive elements is more than compensated by the increase in computational efficiency of structured meshes when compared to unstructured meshes, leading to a reduction of the simulation time of up to over 200 times for the simulations presented in the paper, thus allowing the simulation of large domains.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"34 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Raster approach to modelling the failure of arbitrarily inclined interfaces with structured meshes\",\"authors\":\"\",\"doi\":\"10.1007/s00466-024-02456-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This paper presents an approach to evaluate the failure of arbitrarily inclined interfaces using FE models with structured spatial discretization, providing accurate prediction of crack propagation along paths known a priori that are not constrained to the element boundaries. The combination of algorithms for the generation of structured discretization of representative polycrystalline microstructures with novel cohesive element formulations allow modelling the failure of complex topologies along rasterised boundaries, with noticeably higher computational efficiency and comparable accuracy. Two formulations of raster cohesive elements are presented, adopting either elastic-brittle or Tvergaard–Hutchinson traction separation laws. The formulations proposed are first validated comparing the failure of the interface within bi-crystal structures discretised using hexahedral elements either within a structured mesh (i.e. with rasterised boundaries) or an unstructured mesh (i.e. with planar boundary). Subsequently, the effectiveness of the formulations is demonstrated comparing the inter-granular crack propagation within complex polycrystalline microstructures. The behaviour of the novel cohesive element formulation in structured meshes consisting of regular hexahedral elements is in excellent agreement with the deformation and failure of classic cohesive element formulations placed along the planar boundaries of unstructured meshes consisting of tetrahedral elements. The higher computational cost of the raster cohesive elements is more than compensated by the increase in computational efficiency of structured meshes when compared to unstructured meshes, leading to a reduction of the simulation time of up to over 200 times for the simulations presented in the paper, thus allowing the simulation of large domains.</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-024-02456-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02456-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Raster approach to modelling the failure of arbitrarily inclined interfaces with structured meshes
Abstract
This paper presents an approach to evaluate the failure of arbitrarily inclined interfaces using FE models with structured spatial discretization, providing accurate prediction of crack propagation along paths known a priori that are not constrained to the element boundaries. The combination of algorithms for the generation of structured discretization of representative polycrystalline microstructures with novel cohesive element formulations allow modelling the failure of complex topologies along rasterised boundaries, with noticeably higher computational efficiency and comparable accuracy. Two formulations of raster cohesive elements are presented, adopting either elastic-brittle or Tvergaard–Hutchinson traction separation laws. The formulations proposed are first validated comparing the failure of the interface within bi-crystal structures discretised using hexahedral elements either within a structured mesh (i.e. with rasterised boundaries) or an unstructured mesh (i.e. with planar boundary). Subsequently, the effectiveness of the formulations is demonstrated comparing the inter-granular crack propagation within complex polycrystalline microstructures. The behaviour of the novel cohesive element formulation in structured meshes consisting of regular hexahedral elements is in excellent agreement with the deformation and failure of classic cohesive element formulations placed along the planar boundaries of unstructured meshes consisting of tetrahedral elements. The higher computational cost of the raster cohesive elements is more than compensated by the increase in computational efficiency of structured meshes when compared to unstructured meshes, leading to a reduction of the simulation time of up to over 200 times for the simulations presented in the paper, thus allowing the simulation of large domains.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.