将逆映射表示为特征 2 有限域中的二次函数组合

Florian Luca, Santanu Sarkar, Pantelimon Stănică
{"title":"将逆映射表示为特征 2 有限域中的二次函数组合","authors":"Florian Luca, Santanu Sarkar, Pantelimon Stănică","doi":"10.1007/s12095-024-00702-5","DOIUrl":null,"url":null,"abstract":"<p>In 1953, Carlitz showed that all permutation polynomials over <span>\\({\\mathbb F}_q\\)</span>, where <span>\\(q&gt;2\\)</span> is a power of a prime, are generated by the special permutation polynomials <span>\\(x^{q-2}\\)</span> (the inversion) and <span>\\( ax+b\\)</span> (affine functions, where <span>\\(0\\ne a, b\\in {\\mathbb F}_q\\)</span>). Recently, Nikova, Nikov and Rijmen (2019) proposed an algorithm (NNR) to find a decomposition of the inverse function in quadratics, and computationally covered all dimensions <span>\\(n\\le 16\\)</span>. Petrides (2023) theoretically found a class of integers for which it is easy to decompose the inverse into quadratics, and improved the NNR algorithm, thereby extending the computation up to <span>\\(n\\le 32\\)</span>. In this paper, we extend Petrides’ result, as well as we propose a new number theoretical approach, which allows us to easily cover all (surely, odd) exponents up to 250, at least.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representing the inverse map as a composition of quadratics in a finite field of characteristic 2\",\"authors\":\"Florian Luca, Santanu Sarkar, Pantelimon Stănică\",\"doi\":\"10.1007/s12095-024-00702-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1953, Carlitz showed that all permutation polynomials over <span>\\\\({\\\\mathbb F}_q\\\\)</span>, where <span>\\\\(q&gt;2\\\\)</span> is a power of a prime, are generated by the special permutation polynomials <span>\\\\(x^{q-2}\\\\)</span> (the inversion) and <span>\\\\( ax+b\\\\)</span> (affine functions, where <span>\\\\(0\\\\ne a, b\\\\in {\\\\mathbb F}_q\\\\)</span>). Recently, Nikova, Nikov and Rijmen (2019) proposed an algorithm (NNR) to find a decomposition of the inverse function in quadratics, and computationally covered all dimensions <span>\\\\(n\\\\le 16\\\\)</span>. Petrides (2023) theoretically found a class of integers for which it is easy to decompose the inverse into quadratics, and improved the NNR algorithm, thereby extending the computation up to <span>\\\\(n\\\\le 32\\\\)</span>. In this paper, we extend Petrides’ result, as well as we propose a new number theoretical approach, which allows us to easily cover all (surely, odd) exponents up to 250, at least.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00702-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00702-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1953年,Carlitz证明了\({\mathbb F}_q\)上的所有置换多项式,其中\(q>2\)是素数的幂,由特殊置换多项式\(x^{q-2}\)(反函数)和\( ax+b\)(仿射函数,其中\(0\ne a, b\in {\mathbb F}_q\))生成。最近,Nikova、Nikov和Rijmen(2019)提出了一种算法(NNR)来寻找二次函数的反函数分解,并在计算上覆盖了所有维度(n\le 16\)。Petrides (2023)从理论上找到了一类很容易将反函数分解成二次函数的整数,并改进了NNR算法,从而将计算扩展到了\(n\le 32\)。在本文中,我们扩展了 Petrides 的结果,并提出了一种新的数论方法,使我们能够轻松地涵盖至少 250 以下的所有(肯定的奇数)指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Representing the inverse map as a composition of quadratics in a finite field of characteristic 2

Representing the inverse map as a composition of quadratics in a finite field of characteristic 2

In 1953, Carlitz showed that all permutation polynomials over \({\mathbb F}_q\), where \(q>2\) is a power of a prime, are generated by the special permutation polynomials \(x^{q-2}\) (the inversion) and \( ax+b\) (affine functions, where \(0\ne a, b\in {\mathbb F}_q\)). Recently, Nikova, Nikov and Rijmen (2019) proposed an algorithm (NNR) to find a decomposition of the inverse function in quadratics, and computationally covered all dimensions \(n\le 16\). Petrides (2023) theoretically found a class of integers for which it is easy to decompose the inverse into quadratics, and improved the NNR algorithm, thereby extending the computation up to \(n\le 32\). In this paper, we extend Petrides’ result, as well as we propose a new number theoretical approach, which allows us to easily cover all (surely, odd) exponents up to 250, at least.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信