同调特性类 II:维特类

Jan Dymara, Tadeusz Januszkiewicz
{"title":"同调特性类 II:维特类","authors":"Jan Dymara, Tadeusz Januszkiewicz","doi":"arxiv-2403.05255","DOIUrl":null,"url":null,"abstract":"Let $K$ be an arbitrary infinite field. The cohomology group $H^2(SL(2,K),\nH_2\\,SL(2,K))$ contains the class of the universal central extension. When\nstudying representations of fundamental groups of surfaces in $SL(2,K)$ it is\nuseful to have classes stable under deformations (Fenchel--Nielsen twists) of\nrepresentations. We identify the maximal quotient of the universal class which\nis stable under twists as the Witt class of Nekovar. The Milnor--Wood\ninequality asserts that an $SL(2,{\\bf R})$-bundle over a surface of genus $g$\nadmits a flat structure if and only if its Euler number is $\\leq (g-1)$. We\nestablish an analog of this inequality, and a saturation result for the Witt\nclass. The result is sharp for the field of rationals, but not sharp in\ngeneral.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tautological characteristic classes II: the Witt class\",\"authors\":\"Jan Dymara, Tadeusz Januszkiewicz\",\"doi\":\"arxiv-2403.05255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be an arbitrary infinite field. The cohomology group $H^2(SL(2,K),\\nH_2\\\\,SL(2,K))$ contains the class of the universal central extension. When\\nstudying representations of fundamental groups of surfaces in $SL(2,K)$ it is\\nuseful to have classes stable under deformations (Fenchel--Nielsen twists) of\\nrepresentations. We identify the maximal quotient of the universal class which\\nis stable under twists as the Witt class of Nekovar. The Milnor--Wood\\ninequality asserts that an $SL(2,{\\\\bf R})$-bundle over a surface of genus $g$\\nadmits a flat structure if and only if its Euler number is $\\\\leq (g-1)$. We\\nestablish an analog of this inequality, and a saturation result for the Witt\\nclass. The result is sharp for the field of rationals, but not sharp in\\ngeneral.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.05255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.05255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $K$ 是一个任意的无限域。同调群 $H^2(SL(2,K),H_2\,SL(2,K))$包含普遍中心扩展的类。在研究$SL(2,K)$中曲面基本群的表示时,有一个在表示的变形(芬切尔--尼尔森扭曲)下稳定的类是非常有用的。我们把在扭转下稳定的普遍类的最大商确定为内科瓦的维特类。米尔诺--伍丁内品质(Milnor--Woodinequality)断言,当且仅当其欧拉数为$\leq (g-1)$时,在属$g$的曲面上的$SL(2,{\bf R})$束具有平面结构。我们建立了这一不等式的类比,以及维特类的饱和结果。这个结果在有理数域是尖锐的,但在一般情况下并不尖锐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tautological characteristic classes II: the Witt class
Let $K$ be an arbitrary infinite field. The cohomology group $H^2(SL(2,K), H_2\,SL(2,K))$ contains the class of the universal central extension. When studying representations of fundamental groups of surfaces in $SL(2,K)$ it is useful to have classes stable under deformations (Fenchel--Nielsen twists) of representations. We identify the maximal quotient of the universal class which is stable under twists as the Witt class of Nekovar. The Milnor--Wood inequality asserts that an $SL(2,{\bf R})$-bundle over a surface of genus $g$ admits a flat structure if and only if its Euler number is $\leq (g-1)$. We establish an analog of this inequality, and a saturation result for the Witt class. The result is sharp for the field of rationals, but not sharp in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信