层流背景下图形受迫平均曲率流的周期均质化收敛率

{"title":"层流背景下图形受迫平均曲率流的周期均质化收敛率","authors":"","doi":"10.1007/s00030-024-00929-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we obtain the rate <span> <span>\\(O(\\varepsilon ^{1/2})\\)</span> </span> of convergence in periodic homogenization of forced graphical mean curvature flows in the laminated setting. We also discuss with an example that a faster rate cannot be obtained by utilizing Lipscthiz estimates.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A convergence rate of periodic homogenization for forced mean curvature flow of graphs in the laminar setting\",\"authors\":\"\",\"doi\":\"10.1007/s00030-024-00929-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we obtain the rate <span> <span>\\\\(O(\\\\varepsilon ^{1/2})\\\\)</span> </span> of convergence in periodic homogenization of forced graphical mean curvature flows in the laminated setting. We also discuss with an example that a faster rate cannot be obtained by utilizing Lipscthiz estimates.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00929-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00929-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 在本文中,我们得到了在层状环境中强迫图形平均曲率流的周期同质化的收敛速率(O(\varepsilon ^{1/2}))。我们还通过一个例子讨论了利用 Lipscthiz 估计无法获得更快的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A convergence rate of periodic homogenization for forced mean curvature flow of graphs in the laminar setting

Abstract

In this paper, we obtain the rate \(O(\varepsilon ^{1/2})\) of convergence in periodic homogenization of forced graphical mean curvature flows in the laminated setting. We also discuss with an example that a faster rate cannot be obtained by utilizing Lipscthiz estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信