Zhengjie Sun, Hui Yang, Chao Li, Qiuyan Yao, Yun Teng, Jie Zhang, Sheng Liu, Yunbo Li, Athanasios V. Vasilakos
{"title":"基于注意力机制的智慧城市边缘计算网络资源分配方案","authors":"Zhengjie Sun, Hui Yang, Chao Li, Qiuyan Yao, Yun Teng, Jie Zhang, Sheng Liu, Yunbo Li, Athanasios V. Vasilakos","doi":"10.1145/3650031","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the number of devices and terminals connected to the smart city has increased significantly. Edge networks face a greater variety of connected objects and massive services. Considering that a large number of services have different QoS requirements, it has always been a huge challenge for smart city to optimally allocate limited computing resources to all services to obtain satisfactory performance. In particular, delay is intolerable for services in certain applications, such as medical, industrial applications, etc, that such applications require the high priority. Therefore, through flexibly dynamic scheduling, it is crucial to schedule services to the optimal node to ensure user experience. In this paper, we propose a resource allocation scheme for hierarchical edge computing network in smart city based on attention mechanism, for extracting a small number of features that can represent services from a large amount of information collected from edge nodes. The attention mechanism is used to quickly determine the priority of the services. Based on this, task deployment and resource allocation for different task priorities are developed to ensure the quality of service in smart cities by introducing Q-learning. Simulation results show that the proposed scheme can effectively improve the edge network resource utilization, reduce the average delay of task processing, and effectively guarantee the quality of service.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"16 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Resource Allocation Scheme for Edge Computing Network in Smart City Based on Attention Mechanism\",\"authors\":\"Zhengjie Sun, Hui Yang, Chao Li, Qiuyan Yao, Yun Teng, Jie Zhang, Sheng Liu, Yunbo Li, Athanasios V. Vasilakos\",\"doi\":\"10.1145/3650031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the number of devices and terminals connected to the smart city has increased significantly. Edge networks face a greater variety of connected objects and massive services. Considering that a large number of services have different QoS requirements, it has always been a huge challenge for smart city to optimally allocate limited computing resources to all services to obtain satisfactory performance. In particular, delay is intolerable for services in certain applications, such as medical, industrial applications, etc, that such applications require the high priority. Therefore, through flexibly dynamic scheduling, it is crucial to schedule services to the optimal node to ensure user experience. In this paper, we propose a resource allocation scheme for hierarchical edge computing network in smart city based on attention mechanism, for extracting a small number of features that can represent services from a large amount of information collected from edge nodes. The attention mechanism is used to quickly determine the priority of the services. Based on this, task deployment and resource allocation for different task priorities are developed to ensure the quality of service in smart cities by introducing Q-learning. Simulation results show that the proposed scheme can effectively improve the edge network resource utilization, reduce the average delay of task processing, and effectively guarantee the quality of service.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3650031\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Resource Allocation Scheme for Edge Computing Network in Smart City Based on Attention Mechanism
In recent years, the number of devices and terminals connected to the smart city has increased significantly. Edge networks face a greater variety of connected objects and massive services. Considering that a large number of services have different QoS requirements, it has always been a huge challenge for smart city to optimally allocate limited computing resources to all services to obtain satisfactory performance. In particular, delay is intolerable for services in certain applications, such as medical, industrial applications, etc, that such applications require the high priority. Therefore, through flexibly dynamic scheduling, it is crucial to schedule services to the optimal node to ensure user experience. In this paper, we propose a resource allocation scheme for hierarchical edge computing network in smart city based on attention mechanism, for extracting a small number of features that can represent services from a large amount of information collected from edge nodes. The attention mechanism is used to quickly determine the priority of the services. Based on this, task deployment and resource allocation for different task priorities are developed to ensure the quality of service in smart cities by introducing Q-learning. Simulation results show that the proposed scheme can effectively improve the edge network resource utilization, reduce the average delay of task processing, and effectively guarantee the quality of service.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.