韦尔斯特拉斯 ZETA 函数和 p-ADIC 线性关系

IF 0.6 4区 数学 Q3 MATHEMATICS
DUC HIEP PHAM
{"title":"韦尔斯特拉斯 ZETA 函数和 p-ADIC 线性关系","authors":"DUC HIEP PHAM","doi":"10.1017/s0004972724000091","DOIUrl":null,"url":null,"abstract":"<p>We discuss the <span>p</span>-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the <span>p</span>-adic domain. These results are extensions of the <span>p</span>-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, <span>Logarithmic Forms and Diophantine Geometry</span>, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre <span>p</span>-adique de variétés de groupe’, <span>Invent. Math.</span> <span>40</span>(2) (1977), 171–193].</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"34 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEIERSTRASS ZETA FUNCTIONS AND p-ADIC LINEAR RELATIONS\",\"authors\":\"DUC HIEP PHAM\",\"doi\":\"10.1017/s0004972724000091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss the <span>p</span>-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the <span>p</span>-adic domain. These results are extensions of the <span>p</span>-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, <span>Logarithmic Forms and Diophantine Geometry</span>, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre <span>p</span>-adique de variétés de groupe’, <span>Invent. Math.</span> <span>40</span>(2) (1977), 171–193].</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000091\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论与代数数域上定义的椭圆曲线相关的 p-adic Weierstrass zeta 函数,以及它们在 p-adic 域中的值的线性关系。这些结果是 Wüstholz 在复数域给出的 p-adic 类似结果的扩展[见 A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3],同时也将 Bertrand 的一个结果推广到更高维度['Sous-groupes à un paramètre p-adique de variétés de groupe', Invent.Math.40(2) (1977), 171-193].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WEIERSTRASS ZETA FUNCTIONS AND p-ADIC LINEAR RELATIONS

We discuss the p-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the p-adic domain. These results are extensions of the p-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre p-adique de variétés de groupe’, Invent. Math. 40(2) (1977), 171–193].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信