{"title":"韦尔斯特拉斯 ZETA 函数和 p-ADIC 线性关系","authors":"DUC HIEP PHAM","doi":"10.1017/s0004972724000091","DOIUrl":null,"url":null,"abstract":"<p>We discuss the <span>p</span>-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the <span>p</span>-adic domain. These results are extensions of the <span>p</span>-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, <span>Logarithmic Forms and Diophantine Geometry</span>, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre <span>p</span>-adique de variétés de groupe’, <span>Invent. Math.</span> <span>40</span>(2) (1977), 171–193].</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"34 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEIERSTRASS ZETA FUNCTIONS AND p-ADIC LINEAR RELATIONS\",\"authors\":\"DUC HIEP PHAM\",\"doi\":\"10.1017/s0004972724000091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss the <span>p</span>-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the <span>p</span>-adic domain. These results are extensions of the <span>p</span>-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, <span>Logarithmic Forms and Diophantine Geometry</span>, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre <span>p</span>-adique de variétés de groupe’, <span>Invent. Math.</span> <span>40</span>(2) (1977), 171–193].</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000091\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们讨论与代数数域上定义的椭圆曲线相关的 p-adic Weierstrass zeta 函数,以及它们在 p-adic 域中的值的线性关系。这些结果是 Wüstholz 在复数域给出的 p-adic 类似结果的扩展[见 A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3],同时也将 Bertrand 的一个结果推广到更高维度['Sous-groupes à un paramètre p-adique de variétés de groupe', Invent.Math.40(2) (1977), 171-193].
WEIERSTRASS ZETA FUNCTIONS AND p-ADIC LINEAR RELATIONS
We discuss the p-adic Weierstrass zeta functions associated with elliptic curves defined over the field of algebraic numbers and linear relations for their values in the p-adic domain. These results are extensions of the p-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G. Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher dimensions [‘Sous-groupes à un paramètre p-adique de variétés de groupe’, Invent. Math.40(2) (1977), 171–193].
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society