$\mathbb{R}^2$中大地圆盘相交图的基于簇的分离器

Boris Aronov, Mark de Berg, Leonidas Theocharous
{"title":"$\\mathbb{R}^2$中大地圆盘相交图的基于簇的分离器","authors":"Boris Aronov, Mark de Berg, Leonidas Theocharous","doi":"arxiv-2403.04905","DOIUrl":null,"url":null,"abstract":"Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected\nsubset of $\\mathbb{R}^2$ and let $\\mathcal{D}=\\{D_1,\\ldots,D_n\\}$ be a set of\ngeodesic disks with respect to the metric $d$. We prove that\n$\\mathcal{G}^{\\times}(\\mathcal{D})$, the intersection graph of the disks in\n$\\mathcal{D}$, has a clique-based separator consisting of\n$O(n^{3/4+\\varepsilon})$ cliques. This significantly extends the class of\nobjects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs in\ntime $2^{O(n^{3/4+\\varepsilon})}$, assuming the boundaries of the disks $D_i$\ncan be computed in polynomial time. We also use our clique-based separator to\nobtain a simple, efficient, and almost exact distance oracle for intersection\ngraphs of geodesic disks. Our distance oracle uses $O(n^{7/4+\\varepsilon})$\nstorage and can report the hop distance between any two nodes in\n$\\mathcal{G}^{\\times}(\\mathcal{D})$ in $O(n^{3/4+\\varepsilon})$ time, up to an\nadditive error of one. So far, distance oracles with an additive error of one\nthat use subquadratic storage and sublinear query time were not known for such\ngeneral graph classes.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Clique-Based Separator for Intersection Graphs of Geodesic Disks in $\\\\mathbb{R}^2$\",\"authors\":\"Boris Aronov, Mark de Berg, Leonidas Theocharous\",\"doi\":\"arxiv-2403.04905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected\\nsubset of $\\\\mathbb{R}^2$ and let $\\\\mathcal{D}=\\\\{D_1,\\\\ldots,D_n\\\\}$ be a set of\\ngeodesic disks with respect to the metric $d$. We prove that\\n$\\\\mathcal{G}^{\\\\times}(\\\\mathcal{D})$, the intersection graph of the disks in\\n$\\\\mathcal{D}$, has a clique-based separator consisting of\\n$O(n^{3/4+\\\\varepsilon})$ cliques. This significantly extends the class of\\nobjects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs in\\ntime $2^{O(n^{3/4+\\\\varepsilon})}$, assuming the boundaries of the disks $D_i$\\ncan be computed in polynomial time. We also use our clique-based separator to\\nobtain a simple, efficient, and almost exact distance oracle for intersection\\ngraphs of geodesic disks. Our distance oracle uses $O(n^{7/4+\\\\varepsilon})$\\nstorage and can report the hop distance between any two nodes in\\n$\\\\mathcal{G}^{\\\\times}(\\\\mathcal{D})$ in $O(n^{3/4+\\\\varepsilon})$ time, up to an\\nadditive error of one. So far, distance oracles with an additive error of one\\nthat use subquadratic storage and sublinear query time were not known for such\\ngeneral graph classes.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.04905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.04905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $d$ 是定义在 $\mathbb{R}^2$ 的路径连接子集上的(良好的)最短路径度量,让 $\mathcal{D}=\{D_1,\ldots,D_n\}$ 是关于度量 $d$ 的大地圆盘集合。我们证明$\mathcal{G}^{times}(\mathcal{D})$,即$\mathcal{D}$中的磁盘的交集图,有一个由$O(n^{3/4+\varepsilon})$ 小块组成的基于小块的分离器。这极大地扩展了交集图具有小的基于小块的分离器的对象类别。我们的基于小块的分离器产生了一种 $q$-COLORING 算法,该算法的运行时间为 $2^{O(n^{3/4+\varepsilon})}$ ,前提是磁盘 $D_i$ 的边界可以在多项式时间内计算出来。我们还利用基于clique的分离器为大地圆盘的交集图提供了一个简单、高效、几乎精确的距离算法。我们的距离算法使用 $O(n^{7/4+\varepsilon})$ 存储空间,可以在 $O(n^{3/4+\varepsilon})$ 时间内报告任意两个节点在$\mathcal{G}^{\times}(\mathcal{D})$ 中的跳跃距离,误差不超过 1。迄今为止,还不知道在这样的通用图类中,使用亚二次存储和亚线性查询时间、加法误差为 1 的距离算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Clique-Based Separator for Intersection Graphs of Geodesic Disks in $\mathbb{R}^2$
Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected subset of $\mathbb{R}^2$ and let $\mathcal{D}=\{D_1,\ldots,D_n\}$ be a set of geodesic disks with respect to the metric $d$. We prove that $\mathcal{G}^{\times}(\mathcal{D})$, the intersection graph of the disks in $\mathcal{D}$, has a clique-based separator consisting of $O(n^{3/4+\varepsilon})$ cliques. This significantly extends the class of objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs in time $2^{O(n^{3/4+\varepsilon})}$, assuming the boundaries of the disks $D_i$ can be computed in polynomial time. We also use our clique-based separator to obtain a simple, efficient, and almost exact distance oracle for intersection graphs of geodesic disks. Our distance oracle uses $O(n^{7/4+\varepsilon})$ storage and can report the hop distance between any two nodes in $\mathcal{G}^{\times}(\mathcal{D})$ in $O(n^{3/4+\varepsilon})$ time, up to an additive error of one. So far, distance oracles with an additive error of one that use subquadratic storage and sublinear query time were not known for such general graph classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信