利用准蒙特卡洛积分实现具有熵风险度量的不确定性下抛物线 PDE 受限最优控制

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Philipp A. Guth, Vesa Kaarnioja, Frances Y. Kuo, Claudia Schillings, Ian H. Sloan
{"title":"利用准蒙特卡洛积分实现具有熵风险度量的不确定性下抛物线 PDE 受限最优控制","authors":"Philipp A. Guth, Vesa Kaarnioja, Frances Y. Kuo, Claudia Schillings, Ian H. Sloan","doi":"10.1007/s00211-024-01397-9","DOIUrl":null,"url":null,"abstract":"<p>We study the application of a tailored quasi-Monte Carlo (QMC) method to a class of optimal control problems subject to parabolic partial differential equation (PDE) constraints under uncertainty: the state in our setting is the solution of a parabolic PDE with a random thermal diffusion coefficient, steered by a control function. To account for the presence of uncertainty in the optimal control problem, the objective function is composed with a risk measure. We focus on two risk measures, both involving high-dimensional integrals over the stochastic variables: the expected value and the (nonlinear) entropic risk measure. The high-dimensional integrals are computed numerically using specially designed QMC methods and, under moderate assumptions on the input random field, the error rate is shown to be essentially linear, independently of the stochastic dimension of the problem—and thereby superior to ordinary Monte Carlo methods. Numerical results demonstrate the effectiveness of our method.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"87 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration\",\"authors\":\"Philipp A. Guth, Vesa Kaarnioja, Frances Y. Kuo, Claudia Schillings, Ian H. Sloan\",\"doi\":\"10.1007/s00211-024-01397-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the application of a tailored quasi-Monte Carlo (QMC) method to a class of optimal control problems subject to parabolic partial differential equation (PDE) constraints under uncertainty: the state in our setting is the solution of a parabolic PDE with a random thermal diffusion coefficient, steered by a control function. To account for the presence of uncertainty in the optimal control problem, the objective function is composed with a risk measure. We focus on two risk measures, both involving high-dimensional integrals over the stochastic variables: the expected value and the (nonlinear) entropic risk measure. The high-dimensional integrals are computed numerically using specially designed QMC methods and, under moderate assumptions on the input random field, the error rate is shown to be essentially linear, independently of the stochastic dimension of the problem—and thereby superior to ordinary Monte Carlo methods. Numerical results demonstrate the effectiveness of our method.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-024-01397-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01397-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了如何将定制的准蒙特卡罗(QMC)方法应用于一类在不确定条件下受抛物线偏微分方程(PDE)约束的最优控制问题:在我们的设置中,状态是具有随机热扩散系数的抛物线偏微分方程的解,由控制函数引导。为了考虑最优控制问题中存在的不确定性,目标函数由风险度量组成。我们重点研究两种风险度量,它们都涉及随机变量的高维积分:期望值和(非线性)熵风险度量。我们使用专门设计的 QMC 方法对高维积分进行数值计算,结果表明,在输入随机场的适度假设下,误差率基本上是线性的,与问题的随机维度无关,因此优于普通蒙特卡罗方法。数值结果证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration

Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration

We study the application of a tailored quasi-Monte Carlo (QMC) method to a class of optimal control problems subject to parabolic partial differential equation (PDE) constraints under uncertainty: the state in our setting is the solution of a parabolic PDE with a random thermal diffusion coefficient, steered by a control function. To account for the presence of uncertainty in the optimal control problem, the objective function is composed with a risk measure. We focus on two risk measures, both involving high-dimensional integrals over the stochastic variables: the expected value and the (nonlinear) entropic risk measure. The high-dimensional integrals are computed numerically using specially designed QMC methods and, under moderate assumptions on the input random field, the error rate is shown to be essentially linear, independently of the stochastic dimension of the problem—and thereby superior to ordinary Monte Carlo methods. Numerical results demonstrate the effectiveness of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信