{"title":"对具有饱和治疗功能的基于网络的 SIR 流行病模型进行全局分析","authors":"Xiaodan Wei","doi":"10.1142/s1793524523501127","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></math></span><span></span>, there exist two values of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>: <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, such that the disease-free equilibrium is globally asymptotically stable when <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and multiple endemic equilibria exist when <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≥</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. This means that the parameter <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> has an essential influence on the spreading of the disease. (2) In the case of the threshold value <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>1</mn></math></span><span></span>, if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span>, then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"26 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global analysis of a network-based SIR epidemic model with a saturated treatment function\",\"authors\":\"Xiaodan Wei\",\"doi\":\"10.1142/s1793524523501127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></math></span><span></span>, there exist two values of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span>: <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, such that the disease-free equilibrium is globally asymptotically stable when <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and multiple endemic equilibria exist when <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>≥</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. This means that the parameter <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> has an essential influence on the spreading of the disease. (2) In the case of the threshold value <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>1</mn></math></span><span></span>, if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span>, then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.</p>\",\"PeriodicalId\":49273,\"journal\":{\"name\":\"International Journal of Biomathematics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793524523501127\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501127","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Global analysis of a network-based SIR epidemic model with a saturated treatment function
In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value , there exist two values of : and , such that the disease-free equilibrium is globally asymptotically stable when and multiple endemic equilibria exist when . This means that the parameter has an essential influence on the spreading of the disease. (2) In the case of the threshold value , if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if , then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.
期刊介绍:
The goal of this journal is to present the latest achievements in biomathematics, facilitate international academic exchanges and promote the development of biomathematics. Its research fields include mathematical ecology, infectious disease dynamical system, biostatistics and bioinformatics.
Only original papers will be considered. Submission of a manuscript indicates a tacit understanding that the paper is not actively under consideration for publication with other journals. As submission and reviewing processes are handled electronically whenever possible, the journal promises rapid publication of articles.
The International Journal of Biomathematics is published bimonthly.