对具有饱和治疗功能的基于网络的 SIR 流行病模型进行全局分析

IF 2.4 3区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xiaodan Wei
{"title":"对具有饱和治疗功能的基于网络的 SIR 流行病模型进行全局分析","authors":"Xiaodan Wei","doi":"10.1142/s1793524523501127","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span><span></span>, there exist two values of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>: <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, such that the disease-free equilibrium is globally asymptotically stable when <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and multiple endemic equilibria exist when <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≥</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. This means that the parameter <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> has an essential influence on the spreading of the disease. (2) In the case of the threshold value <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span>, then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.</p>","PeriodicalId":49273,"journal":{"name":"International Journal of Biomathematics","volume":"26 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global analysis of a network-based SIR epidemic model with a saturated treatment function\",\"authors\":\"Xiaodan Wei\",\"doi\":\"10.1142/s1793524523501127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span><span></span>, there exist two values of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span>: <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, such that the disease-free equilibrium is globally asymptotically stable when <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span> and multiple endemic equilibria exist when <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>≥</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>. This means that the parameter <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> has an essential influence on the spreading of the disease. (2) In the case of the threshold value <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>≤</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span></span>, then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.</p>\",\"PeriodicalId\":49273,\"journal\":{\"name\":\"International Journal of Biomathematics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793524523501127\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501127","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个基于网络的 SIR 流行病模型,该模型具有饱和治疗功能,其中引入了一个参数 α 来衡量感染者延迟治疗的影响程度。我们的目的是进行全局分析,研究参数 α 如何影响疾病的传播。我们的主要结果如下(1) 在临界值 R0<1 的情况下,存在两个 α 值:αc 和 α0,当 α≤αc 时,无疾病均衡是全局渐近稳定的,而当α≥α0 时,存在多个流行均衡。这说明参数 α 对疾病的传播有着至关重要的影响。(2)在阈值 R0>1 的情况下,如果模型只有一个地方病均衡,那么唯一的地方病均衡具有全局吸引力。在这种情况下,还证明了如果α≤αc,则地方病均衡只有一个,因此是全局有吸引力的。此外,我们还进行了数值模拟,以说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global analysis of a network-based SIR epidemic model with a saturated treatment function

In this paper, we study a network-based SIR epidemic model with a saturated treatment function in which a parameter α is introduced to measure the extent of the effect of the infected being delayed for treatment. Our aim is to present a global analysis and to investigate how the parameter α affects the spreading of diseases. Our main results are as follows: (1) In the case of the threshold value R0<1, there exist two values of α: αc and α0, such that the disease-free equilibrium is globally asymptotically stable when ααc and multiple endemic equilibria exist when αα0. This means that the parameter α has an essential influence on the spreading of the disease. (2) In the case of the threshold value R0>1, if the model has only one endemic equilibrium, then the unique endemic equilibrium is globally attractive. In this case, it is also proved that if ααc, then the endemic equilibrium has only one, so is globally attractive. In addition, numerical simulation is performed to illustrate our theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biomathematics
International Journal of Biomathematics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.70
自引率
13.60%
发文量
820
审稿时长
7.5 months
期刊介绍: The goal of this journal is to present the latest achievements in biomathematics, facilitate international academic exchanges and promote the development of biomathematics. Its research fields include mathematical ecology, infectious disease dynamical system, biostatistics and bioinformatics. Only original papers will be considered. Submission of a manuscript indicates a tacit understanding that the paper is not actively under consideration for publication with other journals. As submission and reviewing processes are handled electronically whenever possible, the journal promises rapid publication of articles. The International Journal of Biomathematics is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信