相对于非局部迪里希勒形式的弱谐波映射的概率特征

IF 1 3区 数学 Q1 MATHEMATICS
Fumiya Okazaki
{"title":"相对于非局部迪里希勒形式的弱谐波映射的概率特征","authors":"Fumiya Okazaki","doi":"10.1007/s11118-024-10129-5","DOIUrl":null,"url":null,"abstract":"<p>We characterize weakly harmonic maps with respect to non-local Dirichlet forms by Markov processes and martingales. In particular, we can obtain discontinuous martingales on Riemannian manifolds from the image of symmetric stable processes under fractional harmonic maps in a weak sense. Based on this characterization, we also consider the continuity of weakly harmonic maps along the paths of Markov processes and describe the condition for the continuity of harmonic maps by quadratic variations of martingales in some situations containing cases of energy minimizing maps.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"87 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Characterization of Weakly Harmonic Maps with Respect to Non-Local Dirichlet Forms\",\"authors\":\"Fumiya Okazaki\",\"doi\":\"10.1007/s11118-024-10129-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterize weakly harmonic maps with respect to non-local Dirichlet forms by Markov processes and martingales. In particular, we can obtain discontinuous martingales on Riemannian manifolds from the image of symmetric stable processes under fractional harmonic maps in a weak sense. Based on this characterization, we also consider the continuity of weakly harmonic maps along the paths of Markov processes and describe the condition for the continuity of harmonic maps by quadratic variations of martingales in some situations containing cases of energy minimizing maps.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10129-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10129-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过马尔可夫过程和马氏过程来描述关于非局部 Dirichlet 形式的弱调和映射。特别是,我们可以从弱意义上的分数调和映射下的对称稳定过程的图像中,得到黎曼流形上的非连续马廷式。基于这一表征,我们还考虑了弱调和映射沿马尔可夫过程路径的连续性,并描述了在某些包含能量最小映射的情况下,调和映射的二次变分马汀格的连续性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Characterization of Weakly Harmonic Maps with Respect to Non-Local Dirichlet Forms

We characterize weakly harmonic maps with respect to non-local Dirichlet forms by Markov processes and martingales. In particular, we can obtain discontinuous martingales on Riemannian manifolds from the image of symmetric stable processes under fractional harmonic maps in a weak sense. Based on this characterization, we also consider the continuity of weakly harmonic maps along the paths of Markov processes and describe the condition for the continuity of harmonic maps by quadratic variations of martingales in some situations containing cases of energy minimizing maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信