{"title":"相对于非局部迪里希勒形式的弱谐波映射的概率特征","authors":"Fumiya Okazaki","doi":"10.1007/s11118-024-10129-5","DOIUrl":null,"url":null,"abstract":"<p>We characterize weakly harmonic maps with respect to non-local Dirichlet forms by Markov processes and martingales. In particular, we can obtain discontinuous martingales on Riemannian manifolds from the image of symmetric stable processes under fractional harmonic maps in a weak sense. Based on this characterization, we also consider the continuity of weakly harmonic maps along the paths of Markov processes and describe the condition for the continuity of harmonic maps by quadratic variations of martingales in some situations containing cases of energy minimizing maps.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"87 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Characterization of Weakly Harmonic Maps with Respect to Non-Local Dirichlet Forms\",\"authors\":\"Fumiya Okazaki\",\"doi\":\"10.1007/s11118-024-10129-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterize weakly harmonic maps with respect to non-local Dirichlet forms by Markov processes and martingales. In particular, we can obtain discontinuous martingales on Riemannian manifolds from the image of symmetric stable processes under fractional harmonic maps in a weak sense. Based on this characterization, we also consider the continuity of weakly harmonic maps along the paths of Markov processes and describe the condition for the continuity of harmonic maps by quadratic variations of martingales in some situations containing cases of energy minimizing maps.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10129-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10129-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Probabilistic Characterization of Weakly Harmonic Maps with Respect to Non-Local Dirichlet Forms
We characterize weakly harmonic maps with respect to non-local Dirichlet forms by Markov processes and martingales. In particular, we can obtain discontinuous martingales on Riemannian manifolds from the image of symmetric stable processes under fractional harmonic maps in a weak sense. Based on this characterization, we also consider the continuity of weakly harmonic maps along the paths of Markov processes and describe the condition for the continuity of harmonic maps by quadratic variations of martingales in some situations containing cases of energy minimizing maps.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.