杨氏图直线填充的非迭代公式

Reuven Hodges
{"title":"杨氏图直线填充的非迭代公式","authors":"Reuven Hodges","doi":"10.1007/s00029-024-00923-9","DOIUrl":null,"url":null,"abstract":"<p>Young diagrams are fundamental combinatorial objects in representation theory and algebraic geometry. Many constructions that rely on these objects depend on variations of a straightening process that expresses a filling of a Young diagram as a sum of semistandard tableaux subject to certain relations. This paper solves the long standing open problem of giving a non-iterative formula for straightening a filling. We apply our formula to give a complete generalization of a theorem of Gonciulea and Lakshmibai.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-iterative formula for straightening fillings of Young diagrams\",\"authors\":\"Reuven Hodges\",\"doi\":\"10.1007/s00029-024-00923-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Young diagrams are fundamental combinatorial objects in representation theory and algebraic geometry. Many constructions that rely on these objects depend on variations of a straightening process that expresses a filling of a Young diagram as a sum of semistandard tableaux subject to certain relations. This paper solves the long standing open problem of giving a non-iterative formula for straightening a filling. We apply our formula to give a complete generalization of a theorem of Gonciulea and Lakshmibai.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00923-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00923-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

杨图是表示论和代数几何中的基本组合对象。许多依赖于这些对象的构造都依赖于整顿过程的变化,而整顿过程将杨图的填充表达为受某些关系制约的半标准表象之和。本文解决了一个长期悬而未决的问题,即给出一个非迭代式的填充整饬公式。我们应用我们的公式给出了冈西乌莱亚和拉克希米拜定理的完整概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-iterative formula for straightening fillings of Young diagrams

Young diagrams are fundamental combinatorial objects in representation theory and algebraic geometry. Many constructions that rely on these objects depend on variations of a straightening process that expresses a filling of a Young diagram as a sum of semistandard tableaux subject to certain relations. This paper solves the long standing open problem of giving a non-iterative formula for straightening a filling. We apply our formula to give a complete generalization of a theorem of Gonciulea and Lakshmibai.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信