用邻苯二甲酸糊精对低分子量聚乙烯亚胺(LMW PEI)进行表面装饰,以改善白细胞介素-12 质粒的输送。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Valiollah Keshavarz, Maryam Kazemi, Bahman Khalvati, Fateme Zare, Ali Dehshahri, Hossein Sadeghpour
{"title":"用邻苯二甲酸糊精对低分子量聚乙烯亚胺(LMW PEI)进行表面装饰,以改善白细胞介素-12 质粒的输送。","authors":"Valiollah Keshavarz,&nbsp;Maryam Kazemi,&nbsp;Bahman Khalvati,&nbsp;Fateme Zare,&nbsp;Ali Dehshahri,&nbsp;Hossein Sadeghpour","doi":"10.1002/btpr.3443","DOIUrl":null,"url":null,"abstract":"<p>In this investigation, low molecular weight polyethyleneimine (LMW PEI; 1.8 kDa branched PEI) was conjugated to phathalated dextrin. The aim of this chemical modification was to decorate PEI molecules with a hydrophilic layer to improve its biophysical properties while the phthalic moiety may improve the hydrophilic-hydrophobic balance of the final structure. The polymers were prepared at various conjugation degrees ranging from 6.5% to 16.5% and characterized in terms of biophysical characteristics as well as their gene transfer ability and cell-induced toxicity. The results showed that dextrin-phthalated-PEI (DPHPEI) polymer was able to form nanoparticles with the size range of around 118–170 nm, with the zeta potential of 6.2–9.5 mV. DPHPEI polymers could increase the level of desired protein expression in the cells by up to three folds compared with unmodified LMW PEI while the cell viability of the modified polymers was around 80%. The result of this study shows a promising approach to improve the transfection efficiency of LMW PEI while maintaining its low toxic effects.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface decoration of low molecular weight polyethylenimine (LMW PEI) by phthalated dextrin for improved delivery of interleukin-12 plasmid\",\"authors\":\"Valiollah Keshavarz,&nbsp;Maryam Kazemi,&nbsp;Bahman Khalvati,&nbsp;Fateme Zare,&nbsp;Ali Dehshahri,&nbsp;Hossein Sadeghpour\",\"doi\":\"10.1002/btpr.3443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this investigation, low molecular weight polyethyleneimine (LMW PEI; 1.8 kDa branched PEI) was conjugated to phathalated dextrin. The aim of this chemical modification was to decorate PEI molecules with a hydrophilic layer to improve its biophysical properties while the phthalic moiety may improve the hydrophilic-hydrophobic balance of the final structure. The polymers were prepared at various conjugation degrees ranging from 6.5% to 16.5% and characterized in terms of biophysical characteristics as well as their gene transfer ability and cell-induced toxicity. The results showed that dextrin-phthalated-PEI (DPHPEI) polymer was able to form nanoparticles with the size range of around 118–170 nm, with the zeta potential of 6.2–9.5 mV. DPHPEI polymers could increase the level of desired protein expression in the cells by up to three folds compared with unmodified LMW PEI while the cell viability of the modified polymers was around 80%. The result of this study shows a promising approach to improve the transfection efficiency of LMW PEI while maintaining its low toxic effects.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3443\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3443","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,低分子量聚乙烯亚胺(LMW PEI;1.8 kDa 支链聚乙烯亚胺)与邻苯二甲酸糊精共轭。这种化学修饰的目的是在 PEI 分子上装饰一层亲水层,以改善其生物物理特性,而邻苯二甲酸分子则可改善最终结构的亲水-疏水平衡。研究人员制备了 6.5% 至 16.5% 不同共轭度的聚合物,并对其生物物理特性、基因转移能力和细胞诱导毒性进行了表征。结果表明,糊精邻苯二甲酸聚乙烯醇(DPHPEI)聚合物能形成尺寸范围约为 118-170 nm 的纳米颗粒,Zeta 电位为 6.2-9.5 mV。与未改性的 LMW PEI 相比,DPHPEI 聚合物可将细胞中预期蛋白质的表达水平提高三倍,而改性聚合物的细胞存活率约为 80%。这项研究结果表明,在保持低毒效应的同时提高 LMW PEI 的转染效率是一种很有前景的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface decoration of low molecular weight polyethylenimine (LMW PEI) by phthalated dextrin for improved delivery of interleukin-12 plasmid

In this investigation, low molecular weight polyethyleneimine (LMW PEI; 1.8 kDa branched PEI) was conjugated to phathalated dextrin. The aim of this chemical modification was to decorate PEI molecules with a hydrophilic layer to improve its biophysical properties while the phthalic moiety may improve the hydrophilic-hydrophobic balance of the final structure. The polymers were prepared at various conjugation degrees ranging from 6.5% to 16.5% and characterized in terms of biophysical characteristics as well as their gene transfer ability and cell-induced toxicity. The results showed that dextrin-phthalated-PEI (DPHPEI) polymer was able to form nanoparticles with the size range of around 118–170 nm, with the zeta potential of 6.2–9.5 mV. DPHPEI polymers could increase the level of desired protein expression in the cells by up to three folds compared with unmodified LMW PEI while the cell viability of the modified polymers was around 80%. The result of this study shows a promising approach to improve the transfection efficiency of LMW PEI while maintaining its low toxic effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信