{"title":"中高体积分数混合颗粒增强铝基复合材料的研究进展","authors":"Zeyi Hu, Puyu Li, Caihe Fan, Yinchun Xiao, Jingyue Huang, Wudan Ma","doi":"10.1166/mex.2024.2673","DOIUrl":null,"url":null,"abstract":"Aluminum matrix composites reinforced with particles offer many advantages, including high specific strength, elevated specific stiffness, reduced thermal expansion coefficient, enhanced thermal conductivity, abrasion resistance, and dimensional stability. These composites find extensive\n application in aerospace, electronic packaging, and weaponry. The concept of hybrid particle reinforcement, involving multiple reinforcing particles, optimizes the performance attributes of each phase and the synergistic reinforcement effect, leading to potentially superior hybrid particle-reinforced\n aluminum matrix composites. This paper presents a comprehensive overview of the methods for preparing particle-reinforced aluminum matrix composites. It examines the toughening mechanisms in aluminum matrix composites reinforced with hybrid particles at medium and high volume fractions. These\n mechanisms include fine grain reinforcement, Orowan reinforcement, and heterogeneous deformation-induced reinforcement, including geometrically necessary dislocation reinforcement. This paper elucidates the role of micronano organizational structures-such as the morphology, size, distribution,\n and interfacial bonding state of hybrid particles and matrix-in determining the comprehensive performance of aluminum matrix composites. Additionally, it explores the effect of hybrid particle morphology, size, distribution, and micronano structure on the composite’s overall performance.\n Finally, future research directions and trends in the development of high-performance hybrid particle-reinforced aluminum matrix composites are discussed.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on aluminum matrix composites reinforced by medium and high volume fraction hybrid particles\",\"authors\":\"Zeyi Hu, Puyu Li, Caihe Fan, Yinchun Xiao, Jingyue Huang, Wudan Ma\",\"doi\":\"10.1166/mex.2024.2673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum matrix composites reinforced with particles offer many advantages, including high specific strength, elevated specific stiffness, reduced thermal expansion coefficient, enhanced thermal conductivity, abrasion resistance, and dimensional stability. These composites find extensive\\n application in aerospace, electronic packaging, and weaponry. The concept of hybrid particle reinforcement, involving multiple reinforcing particles, optimizes the performance attributes of each phase and the synergistic reinforcement effect, leading to potentially superior hybrid particle-reinforced\\n aluminum matrix composites. This paper presents a comprehensive overview of the methods for preparing particle-reinforced aluminum matrix composites. It examines the toughening mechanisms in aluminum matrix composites reinforced with hybrid particles at medium and high volume fractions. These\\n mechanisms include fine grain reinforcement, Orowan reinforcement, and heterogeneous deformation-induced reinforcement, including geometrically necessary dislocation reinforcement. This paper elucidates the role of micronano organizational structures-such as the morphology, size, distribution,\\n and interfacial bonding state of hybrid particles and matrix-in determining the comprehensive performance of aluminum matrix composites. Additionally, it explores the effect of hybrid particle morphology, size, distribution, and micronano structure on the composite’s overall performance.\\n Finally, future research directions and trends in the development of high-performance hybrid particle-reinforced aluminum matrix composites are discussed.\",\"PeriodicalId\":18318,\"journal\":{\"name\":\"Materials Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1166/mex.2024.2673\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/mex.2024.2673","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Research progress on aluminum matrix composites reinforced by medium and high volume fraction hybrid particles
Aluminum matrix composites reinforced with particles offer many advantages, including high specific strength, elevated specific stiffness, reduced thermal expansion coefficient, enhanced thermal conductivity, abrasion resistance, and dimensional stability. These composites find extensive
application in aerospace, electronic packaging, and weaponry. The concept of hybrid particle reinforcement, involving multiple reinforcing particles, optimizes the performance attributes of each phase and the synergistic reinforcement effect, leading to potentially superior hybrid particle-reinforced
aluminum matrix composites. This paper presents a comprehensive overview of the methods for preparing particle-reinforced aluminum matrix composites. It examines the toughening mechanisms in aluminum matrix composites reinforced with hybrid particles at medium and high volume fractions. These
mechanisms include fine grain reinforcement, Orowan reinforcement, and heterogeneous deformation-induced reinforcement, including geometrically necessary dislocation reinforcement. This paper elucidates the role of micronano organizational structures-such as the morphology, size, distribution,
and interfacial bonding state of hybrid particles and matrix-in determining the comprehensive performance of aluminum matrix composites. Additionally, it explores the effect of hybrid particle morphology, size, distribution, and micronano structure on the composite’s overall performance.
Finally, future research directions and trends in the development of high-performance hybrid particle-reinforced aluminum matrix composites are discussed.