Dayana Nascimento Dari Dari, Isabelly Silveira Freitas, Francisco Izaias da Silva Aires, R. Melo, K. M. dos Santos, Patrick da Silva Sousa, Paulo Gonçalves de Sousa Junior, Antônio Luthierre Gama Cavalcante, F. S. Neto, Jessica Lopes da Silva, Érico Carlos de Castro, Valdilane Santos Alexandre, Ana M. da S. Lima, J. Serpa, Maria C. M. de Souza, J. C. S. D. Santos
{"title":"发酵法利用生物质制氢的最新应用和前景综述:全面分析","authors":"Dayana Nascimento Dari Dari, Isabelly Silveira Freitas, Francisco Izaias da Silva Aires, R. Melo, K. M. dos Santos, Patrick da Silva Sousa, Paulo Gonçalves de Sousa Junior, Antônio Luthierre Gama Cavalcante, F. S. Neto, Jessica Lopes da Silva, Érico Carlos de Castro, Valdilane Santos Alexandre, Ana M. da S. Lima, J. Serpa, Maria C. M. de Souza, J. C. S. D. Santos","doi":"10.3390/biomass4010007","DOIUrl":null,"url":null,"abstract":"Fermentation is an oxygen-free biological process that produces hydrogen, a clean, renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production, identify trends and contributors, and map the development of a field, providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analysis and a future perspective on fermentation for hydrogen production. By searching WoS, we evaluated and refined 62,087 articles to 4493 articles. This allowed us to identify the most important journals, countries, institutions, and authors in the field. In addition, the ten most cited articles and the dominant research areas were identified. A keyword analysis revealed five research clusters that illustrate where research is progressing. The outlook indicates that a deeper understanding of microbiology and support from energy policy will drive the development of hydrogen from fermentation.","PeriodicalId":512848,"journal":{"name":"Biomass","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis\",\"authors\":\"Dayana Nascimento Dari Dari, Isabelly Silveira Freitas, Francisco Izaias da Silva Aires, R. Melo, K. M. dos Santos, Patrick da Silva Sousa, Paulo Gonçalves de Sousa Junior, Antônio Luthierre Gama Cavalcante, F. S. Neto, Jessica Lopes da Silva, Érico Carlos de Castro, Valdilane Santos Alexandre, Ana M. da S. Lima, J. Serpa, Maria C. M. de Souza, J. C. S. D. Santos\",\"doi\":\"10.3390/biomass4010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fermentation is an oxygen-free biological process that produces hydrogen, a clean, renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production, identify trends and contributors, and map the development of a field, providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analysis and a future perspective on fermentation for hydrogen production. By searching WoS, we evaluated and refined 62,087 articles to 4493 articles. This allowed us to identify the most important journals, countries, institutions, and authors in the field. In addition, the ten most cited articles and the dominant research areas were identified. A keyword analysis revealed five research clusters that illustrate where research is progressing. The outlook indicates that a deeper understanding of microbiology and support from energy policy will drive the development of hydrogen from fermentation.\",\"PeriodicalId\":512848,\"journal\":{\"name\":\"Biomass\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomass4010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomass4010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis
Fermentation is an oxygen-free biological process that produces hydrogen, a clean, renewable energy source with the potential to power a low-carbon economy. Bibliometric analysis is crucial in academic research to evaluate scientific production, identify trends and contributors, and map the development of a field, providing valuable information to guide researchers and promote scientific innovation. This review provides an advanced bibliometric analysis and a future perspective on fermentation for hydrogen production. By searching WoS, we evaluated and refined 62,087 articles to 4493 articles. This allowed us to identify the most important journals, countries, institutions, and authors in the field. In addition, the ten most cited articles and the dominant research areas were identified. A keyword analysis revealed five research clusters that illustrate where research is progressing. The outlook indicates that a deeper understanding of microbiology and support from energy policy will drive the development of hydrogen from fermentation.