{"title":"分布式计算环境中任务级能源和性能保证工作量调度模型","authors":"Jagadevi Bakka, Sanjeev C. Lingareddy","doi":"10.11591/ijres.v13.i1.pp210-216","DOIUrl":null,"url":null,"abstract":"Scientific workload execution on distributed computing platform such as cloud environment is time intense and expensive. The scientific workload has task dependencies with different service level agreement (SLA) prerequisite at different levels. Existing workload scheduling (WS) design are not efficient in assuring SLA at task level. Alongside, induce higher cost as majority of scheduling mechanisms reduce either time or energy. In reducing, cost both energy and makespan must be optimized together for allocating resource. No prior work has considered optimizing energy and processing time together in meeting task level SLA requirement. This paper present task level energy and performance assurance (TLEPA)-WS algorithm for distributed computing environment. The TLEPA-WS guarantees energy minimization with performance requirement of parallel application under distributed computational environment. Experiment results shows significant reduction in using energy and makespan; thereby reduces cost of workload execution in comparison with various standard workload execution models.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"115 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task level energy and performance assurance workload scheduling model in distributed computing environment\",\"authors\":\"Jagadevi Bakka, Sanjeev C. Lingareddy\",\"doi\":\"10.11591/ijres.v13.i1.pp210-216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific workload execution on distributed computing platform such as cloud environment is time intense and expensive. The scientific workload has task dependencies with different service level agreement (SLA) prerequisite at different levels. Existing workload scheduling (WS) design are not efficient in assuring SLA at task level. Alongside, induce higher cost as majority of scheduling mechanisms reduce either time or energy. In reducing, cost both energy and makespan must be optimized together for allocating resource. No prior work has considered optimizing energy and processing time together in meeting task level SLA requirement. This paper present task level energy and performance assurance (TLEPA)-WS algorithm for distributed computing environment. The TLEPA-WS guarantees energy minimization with performance requirement of parallel application under distributed computational environment. Experiment results shows significant reduction in using energy and makespan; thereby reduces cost of workload execution in comparison with various standard workload execution models.\",\"PeriodicalId\":158991,\"journal\":{\"name\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"volume\":\"115 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijres.v13.i1.pp210-216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v13.i1.pp210-216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Task level energy and performance assurance workload scheduling model in distributed computing environment
Scientific workload execution on distributed computing platform such as cloud environment is time intense and expensive. The scientific workload has task dependencies with different service level agreement (SLA) prerequisite at different levels. Existing workload scheduling (WS) design are not efficient in assuring SLA at task level. Alongside, induce higher cost as majority of scheduling mechanisms reduce either time or energy. In reducing, cost both energy and makespan must be optimized together for allocating resource. No prior work has considered optimizing energy and processing time together in meeting task level SLA requirement. This paper present task level energy and performance assurance (TLEPA)-WS algorithm for distributed computing environment. The TLEPA-WS guarantees energy minimization with performance requirement of parallel application under distributed computational environment. Experiment results shows significant reduction in using energy and makespan; thereby reduces cost of workload execution in comparison with various standard workload execution models.