{"title":"使用基于 ESVO 的 Swish Bessel CNN 分类器的安全心脏病预测模型","authors":"S. Pawar, Damala Dayakar Rao","doi":"10.3233/web-220118","DOIUrl":null,"url":null,"abstract":"Heart disease is a critical issue that affects people, causes serious sickness, and is the main cause of mortality worldwide. Early diagnosis of disease plays a significant role in heart disease prediction and is attained by various automation techniques. The availability of automation techniques initiates the necessity for medical data and the storage of medical data becomes a research problem due to its high sensitivity. The emergence of IoT networks formed a promising solution for data storage through the cloud server and preventing the data from various threats is a challenging problem. A secure heart disease prediction system is developed by the utility of the ESVO-based Swish Bessel CNN classifier (Emperor Spheniscidae Vampire Optimization-based Swish Bessel Convolutional Neural Network), and the important significance of the research depends on the ESVO optimization that helps in gaining a deeper insight of the classifier as well as helps in preventing the threatening of data. The security of the cloud server is enhanced by the EDH-ECC (Entropy Diffie Hellman – Elliptic Curve Cryptography) which promotes the information exchange even in unsecured channels. Similarly, the authentication and authorization of the cloud server are carried out using the EAN-13 and salt-based digital signature that initiates strong credentials and enhance data security. Finally, the heart disease is diagnosed using the ESVO-based Swish Bessel CNN classifier. Assessing the accuracy, sensitivity, specificity, and F1-measure, which provided values of 94.877 %, 95.464 %, 93.293 %, and 95.14 % shows the effectiveness of the research.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure heart disease prediction model using ESVO-based Swish Bessel CNN classifier\",\"authors\":\"S. Pawar, Damala Dayakar Rao\",\"doi\":\"10.3233/web-220118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart disease is a critical issue that affects people, causes serious sickness, and is the main cause of mortality worldwide. Early diagnosis of disease plays a significant role in heart disease prediction and is attained by various automation techniques. The availability of automation techniques initiates the necessity for medical data and the storage of medical data becomes a research problem due to its high sensitivity. The emergence of IoT networks formed a promising solution for data storage through the cloud server and preventing the data from various threats is a challenging problem. A secure heart disease prediction system is developed by the utility of the ESVO-based Swish Bessel CNN classifier (Emperor Spheniscidae Vampire Optimization-based Swish Bessel Convolutional Neural Network), and the important significance of the research depends on the ESVO optimization that helps in gaining a deeper insight of the classifier as well as helps in preventing the threatening of data. The security of the cloud server is enhanced by the EDH-ECC (Entropy Diffie Hellman – Elliptic Curve Cryptography) which promotes the information exchange even in unsecured channels. Similarly, the authentication and authorization of the cloud server are carried out using the EAN-13 and salt-based digital signature that initiates strong credentials and enhance data security. Finally, the heart disease is diagnosed using the ESVO-based Swish Bessel CNN classifier. Assessing the accuracy, sensitivity, specificity, and F1-measure, which provided values of 94.877 %, 95.464 %, 93.293 %, and 95.14 % shows the effectiveness of the research.\",\"PeriodicalId\":42775,\"journal\":{\"name\":\"Web Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-220118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-220118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Secure heart disease prediction model using ESVO-based Swish Bessel CNN classifier
Heart disease is a critical issue that affects people, causes serious sickness, and is the main cause of mortality worldwide. Early diagnosis of disease plays a significant role in heart disease prediction and is attained by various automation techniques. The availability of automation techniques initiates the necessity for medical data and the storage of medical data becomes a research problem due to its high sensitivity. The emergence of IoT networks formed a promising solution for data storage through the cloud server and preventing the data from various threats is a challenging problem. A secure heart disease prediction system is developed by the utility of the ESVO-based Swish Bessel CNN classifier (Emperor Spheniscidae Vampire Optimization-based Swish Bessel Convolutional Neural Network), and the important significance of the research depends on the ESVO optimization that helps in gaining a deeper insight of the classifier as well as helps in preventing the threatening of data. The security of the cloud server is enhanced by the EDH-ECC (Entropy Diffie Hellman – Elliptic Curve Cryptography) which promotes the information exchange even in unsecured channels. Similarly, the authentication and authorization of the cloud server are carried out using the EAN-13 and salt-based digital signature that initiates strong credentials and enhance data security. Finally, the heart disease is diagnosed using the ESVO-based Swish Bessel CNN classifier. Assessing the accuracy, sensitivity, specificity, and F1-measure, which provided values of 94.877 %, 95.464 %, 93.293 %, and 95.14 % shows the effectiveness of the research.
期刊介绍:
Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]