使用自适应神经模糊推理系统预测电池温度

Hanwen Zhang, A. Fotouhi, D. Auger, Matt Lowe
{"title":"使用自适应神经模糊推理系统预测电池温度","authors":"Hanwen Zhang, A. Fotouhi, D. Auger, Matt Lowe","doi":"10.3390/batteries10030085","DOIUrl":null,"url":null,"abstract":"Maintaining batteries within a specific temperature range is vital for safety and efficiency, as extreme temperatures can degrade a battery’s performance and lifespan. In addition, battery temperature is the key parameter in battery safety regulations. Battery thermal management systems (BTMSs) are pivotal in regulating battery temperature. While current BTMSs offer real-time temperature monitoring, their lack of predictive capability poses a limitation. This study introduces a novel hybrid system that combines a machine learning-based battery temperature prediction model with an online battery parameter identification unit. The identification unit continuously updates the battery’s electrical parameters in real time, enhancing the prediction model’s accuracy. The prediction model employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) and considers various input parameters, such as ambient temperature, the battery’s current temperature, internal resistance, and open-circuit voltage. The model accurately predicts the battery’s future temperature in a finite time horizon by dynamically adjusting thermal and electrical parameters based on real-time data. Experimental tests are conducted on Li-ion (NCA and LFP) cylindrical cells across a range of ambient temperatures to validate the system’s accuracy under varying conditions, including state of charge and a dynamic load current. The proposed models prioritise simplicity to ensure real-time industrial applicability.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"114 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System\",\"authors\":\"Hanwen Zhang, A. Fotouhi, D. Auger, Matt Lowe\",\"doi\":\"10.3390/batteries10030085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining batteries within a specific temperature range is vital for safety and efficiency, as extreme temperatures can degrade a battery’s performance and lifespan. In addition, battery temperature is the key parameter in battery safety regulations. Battery thermal management systems (BTMSs) are pivotal in regulating battery temperature. While current BTMSs offer real-time temperature monitoring, their lack of predictive capability poses a limitation. This study introduces a novel hybrid system that combines a machine learning-based battery temperature prediction model with an online battery parameter identification unit. The identification unit continuously updates the battery’s electrical parameters in real time, enhancing the prediction model’s accuracy. The prediction model employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) and considers various input parameters, such as ambient temperature, the battery’s current temperature, internal resistance, and open-circuit voltage. The model accurately predicts the battery’s future temperature in a finite time horizon by dynamically adjusting thermal and electrical parameters based on real-time data. Experimental tests are conducted on Li-ion (NCA and LFP) cylindrical cells across a range of ambient temperatures to validate the system’s accuracy under varying conditions, including state of charge and a dynamic load current. The proposed models prioritise simplicity to ensure real-time industrial applicability.\",\"PeriodicalId\":502356,\"journal\":{\"name\":\"Batteries\",\"volume\":\"114 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10030085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10030085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将电池保持在特定的温度范围内对安全和效率至关重要,因为极端温度会降低电池的性能和使用寿命。此外,电池温度也是电池安全法规中的关键参数。电池热管理系统(BTMS)是调节电池温度的关键。虽然目前的 BTMS 可提供实时温度监控,但其缺乏预测能力,这也是其局限性所在。本研究介绍了一种新型混合系统,它将基于机器学习的电池温度预测模型与在线电池参数识别单元相结合。识别单元可持续实时更新电池的电气参数,从而提高预测模型的准确性。预测模型采用了自适应神经模糊推理系统(ANFIS),并考虑了各种输入参数,如环境温度、电池当前温度、内阻和开路电压。该模型根据实时数据动态调整热参数和电参数,从而在有限的时间范围内准确预测电池的未来温度。在不同环境温度下对锂离子(NCA 和 LFP)圆柱形电池进行了实验测试,以验证系统在不同条件下(包括充电状态和动态负载电流)的准确性。建议的模型以简洁为优先,以确保实时的工业适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
Maintaining batteries within a specific temperature range is vital for safety and efficiency, as extreme temperatures can degrade a battery’s performance and lifespan. In addition, battery temperature is the key parameter in battery safety regulations. Battery thermal management systems (BTMSs) are pivotal in regulating battery temperature. While current BTMSs offer real-time temperature monitoring, their lack of predictive capability poses a limitation. This study introduces a novel hybrid system that combines a machine learning-based battery temperature prediction model with an online battery parameter identification unit. The identification unit continuously updates the battery’s electrical parameters in real time, enhancing the prediction model’s accuracy. The prediction model employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) and considers various input parameters, such as ambient temperature, the battery’s current temperature, internal resistance, and open-circuit voltage. The model accurately predicts the battery’s future temperature in a finite time horizon by dynamically adjusting thermal and electrical parameters based on real-time data. Experimental tests are conducted on Li-ion (NCA and LFP) cylindrical cells across a range of ambient temperatures to validate the system’s accuracy under varying conditions, including state of charge and a dynamic load current. The proposed models prioritise simplicity to ensure real-time industrial applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信