利用 DEM 和改进的 U-Net 从遥感图像中提取丘陵地区的梯田

Fengcan Peng, Qiuzhi Peng, Di Chen, Jiating Lu, Yufei Song
{"title":"利用 DEM 和改进的 U-Net 从遥感图像中提取丘陵地区的梯田","authors":"Fengcan Peng, Qiuzhi Peng, Di Chen, Jiating Lu, Yufei Song","doi":"10.14358/pers.23-00069r2","DOIUrl":null,"url":null,"abstract":"To extract terraced fields in hilly areas on a large scale in an automated and high-precision manner, this paper proposes a terrace extraction method that combines the Digital Elevation Model (DEM), Sentinel-2 imagery, and the improved U-Net semantic segmentation model. The U-Net model\n is modified by introducing Attention Gate modules into its decoding modules to suppress the interference of redundant features and adding Dropout and Batch Normalization layers to improve training speed, robustness, and fitting ability. In addition, the DEM band is combined with the red, green,\n and blue bands of the remote sensing images to make full use of terrain information. The experimental results show that the Precision, Recall, F1 score, and Mean Intersection over Union of the proposed method for terrace extraction are improved to other mainstream advanced methods, and the\n internal information of the terraces extracted is more complete, with fewer false positive and false negative results.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"124 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of Terraces in Hilly Areas from Remote Sensing Images Using DEM and Improved U-Net\",\"authors\":\"Fengcan Peng, Qiuzhi Peng, Di Chen, Jiating Lu, Yufei Song\",\"doi\":\"10.14358/pers.23-00069r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To extract terraced fields in hilly areas on a large scale in an automated and high-precision manner, this paper proposes a terrace extraction method that combines the Digital Elevation Model (DEM), Sentinel-2 imagery, and the improved U-Net semantic segmentation model. The U-Net model\\n is modified by introducing Attention Gate modules into its decoding modules to suppress the interference of redundant features and adding Dropout and Batch Normalization layers to improve training speed, robustness, and fitting ability. In addition, the DEM band is combined with the red, green,\\n and blue bands of the remote sensing images to make full use of terrain information. The experimental results show that the Precision, Recall, F1 score, and Mean Intersection over Union of the proposed method for terrace extraction are improved to other mainstream advanced methods, and the\\n internal information of the terraces extracted is more complete, with fewer false positive and false negative results.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"124 39\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00069r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00069r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了自动、高精度地大规模提取丘陵地区的梯田,本文提出了一种结合数字高程模型(DEM)、哨兵-2 图像和改进的 U-Net 语义分割模型的梯田提取方法。本文对 U-Net 模型进行了改进,在其解码模块中引入注意门模块以抑制冗余特征的干扰,并增加了 Dropout 层和批量归一化层以提高训练速度、鲁棒性和拟合能力。此外,还将 DEM 波段与遥感图像的红绿蓝波段相结合,以充分利用地形信息。实验结果表明,所提出的梯田提取方法的精度、召回率、F1 分数和平均交叉比 Union 均优于其他主流先进方法,提取的梯田内部信息更加完整,假阳性和假阴性结果更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of Terraces in Hilly Areas from Remote Sensing Images Using DEM and Improved U-Net
To extract terraced fields in hilly areas on a large scale in an automated and high-precision manner, this paper proposes a terrace extraction method that combines the Digital Elevation Model (DEM), Sentinel-2 imagery, and the improved U-Net semantic segmentation model. The U-Net model is modified by introducing Attention Gate modules into its decoding modules to suppress the interference of redundant features and adding Dropout and Batch Normalization layers to improve training speed, robustness, and fitting ability. In addition, the DEM band is combined with the red, green, and blue bands of the remote sensing images to make full use of terrain information. The experimental results show that the Precision, Recall, F1 score, and Mean Intersection over Union of the proposed method for terrace extraction are improved to other mainstream advanced methods, and the internal information of the terraces extracted is more complete, with fewer false positive and false negative results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信