解决线性偏微分方程的 Crank-Nicolson 和修正 Crank-Nicolson 数值方法比较研究

Tejaskumar Sharma, Shreekant Pathak, Gargi J Trivedi
{"title":"解决线性偏微分方程的 Crank-Nicolson 和修正 Crank-Nicolson 数值方法比较研究","authors":"Tejaskumar Sharma, Shreekant Pathak, Gargi J Trivedi","doi":"10.17485/ijst/v17i10.1776","DOIUrl":null,"url":null,"abstract":"Objectives: This paper aims to address the limitations of the Crank-Nicolson Finite Difference method and propose an improved version called the modified Crank-Nicolson method. Methods: Utilized implicit discretization in time and space, with parameters k = 0.001, h = 0.1, and γ = 0.1. Conducted extensive testing on various partial differential equations. Findings: Results, displayed in Table 1, showcase the method's stability and accuracy. Comparative analysis in Table 2 demonstrates the Modified Crank-Nicolson method consistently outperforming the traditional approach, reaffirming its superiority in accuracy. Novelty: The modified Crank-Nicolson method offers a significant enhancement to the traditional Crank-Nicolson finite difference method, making it a valuable tool for effectively solving partial differential equations. Keywords: Crank­Nicolson Method, Modified Crank­Nicolson Method, Finite Difference, Partial Differential Equations, Parabolic Equations, Python Software","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":"26 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Crank-Nicolson and Modified Crank-Nicolson Numerical methods to solve linear Partial Differential Equations\",\"authors\":\"Tejaskumar Sharma, Shreekant Pathak, Gargi J Trivedi\",\"doi\":\"10.17485/ijst/v17i10.1776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: This paper aims to address the limitations of the Crank-Nicolson Finite Difference method and propose an improved version called the modified Crank-Nicolson method. Methods: Utilized implicit discretization in time and space, with parameters k = 0.001, h = 0.1, and γ = 0.1. Conducted extensive testing on various partial differential equations. Findings: Results, displayed in Table 1, showcase the method's stability and accuracy. Comparative analysis in Table 2 demonstrates the Modified Crank-Nicolson method consistently outperforming the traditional approach, reaffirming its superiority in accuracy. Novelty: The modified Crank-Nicolson method offers a significant enhancement to the traditional Crank-Nicolson finite difference method, making it a valuable tool for effectively solving partial differential equations. Keywords: Crank­Nicolson Method, Modified Crank­Nicolson Method, Finite Difference, Partial Differential Equations, Parabolic Equations, Python Software\",\"PeriodicalId\":13296,\"journal\":{\"name\":\"Indian journal of science and technology\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i10.1776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i10.1776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本文旨在解决 Crank-Nicolson 有限差分法的局限性,并提出一种改进版的 Crank-Nicolson 方法。方法:利用时间和空间的隐式离散,参数 k = 0.001,h = 0.1,γ = 0.1。对各种偏微分方程进行了广泛的测试。结果表 1 中的结果显示了该方法的稳定性和准确性。表 2 中的对比分析表明,改进型 Crank-Nicolson 方法的性能始终优于传统方法,再次证明了其在准确性方面的优势。新颖性:改进的 Crank-Nicolson 方法显著提高了传统 Crank-Nicolson 有限差分法的性能,使其成为有效求解偏微分方程的重要工具。关键词Crank-Nicolson方法 修正Crank-Nicolson方法 有限差分 偏微分方程 抛物线方程 Python软件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Crank-Nicolson and Modified Crank-Nicolson Numerical methods to solve linear Partial Differential Equations
Objectives: This paper aims to address the limitations of the Crank-Nicolson Finite Difference method and propose an improved version called the modified Crank-Nicolson method. Methods: Utilized implicit discretization in time and space, with parameters k = 0.001, h = 0.1, and γ = 0.1. Conducted extensive testing on various partial differential equations. Findings: Results, displayed in Table 1, showcase the method's stability and accuracy. Comparative analysis in Table 2 demonstrates the Modified Crank-Nicolson method consistently outperforming the traditional approach, reaffirming its superiority in accuracy. Novelty: The modified Crank-Nicolson method offers a significant enhancement to the traditional Crank-Nicolson finite difference method, making it a valuable tool for effectively solving partial differential equations. Keywords: Crank­Nicolson Method, Modified Crank­Nicolson Method, Finite Difference, Partial Differential Equations, Parabolic Equations, Python Software
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信