{"title":"电动汽车车载双向电池充电器的新型组合控制策略","authors":"Khadidja Hadji, K. Hartani, T. Chikouche","doi":"10.11591/ijpeds.v15.i1.pp303-311","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a bidirectional on-board battery charger for electric vehicles (EVs). The studied battery charger is composed of a bidirectional ac-dc converter as the first stage of conversion and a bidirectional dc-dc converter as the second stage. The first one is controlled by a predictive direct power control strategy based on a space vector modulation technique known as P-SVM-DPC, and the second is used to regulate the battery current and regulate the power direction flow by using a direct current control technique. The choice of its topology has taken into consideration the grid-to-vehicles (G2V) and vehicle-to-grid (V2G) power flow directions. During charging or discharging, the DC/DC converter acts likes a buck or boost converter. Using MATLAB/Simulink software, the performance of the battery charger is examined in various operating modes, such as fast charging and quick discharging.","PeriodicalId":355274,"journal":{"name":"International Journal of Power Electronics and Drive Systems (IJPEDS)","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New combined control strategy of on-board bidirectional battery chargers for electric vehicles\",\"authors\":\"Khadidja Hadji, K. Hartani, T. Chikouche\",\"doi\":\"10.11591/ijpeds.v15.i1.pp303-311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to develop a bidirectional on-board battery charger for electric vehicles (EVs). The studied battery charger is composed of a bidirectional ac-dc converter as the first stage of conversion and a bidirectional dc-dc converter as the second stage. The first one is controlled by a predictive direct power control strategy based on a space vector modulation technique known as P-SVM-DPC, and the second is used to regulate the battery current and regulate the power direction flow by using a direct current control technique. The choice of its topology has taken into consideration the grid-to-vehicles (G2V) and vehicle-to-grid (V2G) power flow directions. During charging or discharging, the DC/DC converter acts likes a buck or boost converter. Using MATLAB/Simulink software, the performance of the battery charger is examined in various operating modes, such as fast charging and quick discharging.\",\"PeriodicalId\":355274,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems (IJPEDS)\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems (IJPEDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijpeds.v15.i1.pp303-311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems (IJPEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijpeds.v15.i1.pp303-311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New combined control strategy of on-board bidirectional battery chargers for electric vehicles
This paper aims to develop a bidirectional on-board battery charger for electric vehicles (EVs). The studied battery charger is composed of a bidirectional ac-dc converter as the first stage of conversion and a bidirectional dc-dc converter as the second stage. The first one is controlled by a predictive direct power control strategy based on a space vector modulation technique known as P-SVM-DPC, and the second is used to regulate the battery current and regulate the power direction flow by using a direct current control technique. The choice of its topology has taken into consideration the grid-to-vehicles (G2V) and vehicle-to-grid (V2G) power flow directions. During charging or discharging, the DC/DC converter acts likes a buck or boost converter. Using MATLAB/Simulink software, the performance of the battery charger is examined in various operating modes, such as fast charging and quick discharging.