针对三阶初值问题的等间距网格点块混合法

Salma A. A. Ahmedai Abd Allah, P. Sibanda, S. Goqo, Uthman O. Rufai, H. Sithole Mthethwa, O. Noreldin
{"title":"针对三阶初值问题的等间距网格点块混合法","authors":"Salma A. A. Ahmedai Abd Allah, P. Sibanda, S. Goqo, Uthman O. Rufai, H. Sithole Mthethwa, O. Noreldin","doi":"10.3390/appliedmath4010017","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the block hybrid method with equally spaced intra-step points to solve linear and nonlinear third-order initial value problems. The proposed block hybrid method uses a simple iteration scheme to linearize the equations. Numerical experimentation demonstrates that equally spaced grid points for the block hybrid method enhance its speed of convergence and accuracy compared to other conventional block hybrid methods in the literature. This improvement is attributed to the linearization process, which avoids the use of derivatives. Further, the block hybrid method is consistent, stable, and gives rapid convergence to the solutions. We show that the simple iteration method, when combined with the block hybrid method, exhibits impressive convergence characteristics while preserving computational efficiency. In this study, we also implement the proposed method to solve the nonlinear Jerk equation, producing comparable results with other methods used in the literature.","PeriodicalId":503400,"journal":{"name":"AppliedMath","volume":"62 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Block Hybrid Method with Equally Spaced Grid Points for Third-Order Initial Value Problems\",\"authors\":\"Salma A. A. Ahmedai Abd Allah, P. Sibanda, S. Goqo, Uthman O. Rufai, H. Sithole Mthethwa, O. Noreldin\",\"doi\":\"10.3390/appliedmath4010017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the block hybrid method with equally spaced intra-step points to solve linear and nonlinear third-order initial value problems. The proposed block hybrid method uses a simple iteration scheme to linearize the equations. Numerical experimentation demonstrates that equally spaced grid points for the block hybrid method enhance its speed of convergence and accuracy compared to other conventional block hybrid methods in the literature. This improvement is attributed to the linearization process, which avoids the use of derivatives. Further, the block hybrid method is consistent, stable, and gives rapid convergence to the solutions. We show that the simple iteration method, when combined with the block hybrid method, exhibits impressive convergence characteristics while preserving computational efficiency. In this study, we also implement the proposed method to solve the nonlinear Jerk equation, producing comparable results with other methods used in the literature.\",\"PeriodicalId\":503400,\"journal\":{\"name\":\"AppliedMath\",\"volume\":\"62 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AppliedMath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/appliedmath4010017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/appliedmath4010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们扩展了步内点等间距的分块混合法,以解决线性和非线性三阶初值问题。所提出的分块混合法采用简单的迭代方案使方程线性化。数值实验证明,与文献中其他传统的分块混合法相比,分块混合法的等间距网格点提高了其收敛速度和精度。这种改进归功于避免使用导数的线性化过程。此外,分块混合法具有一致性、稳定性和快速收敛性。我们的研究表明,简单迭代法与分块混合法相结合,在保持计算效率的同时,表现出令人印象深刻的收敛特性。在本研究中,我们还用所提出的方法求解了非线性 Jerk 方程,结果与文献中使用的其他方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Block Hybrid Method with Equally Spaced Grid Points for Third-Order Initial Value Problems
In this paper, we extend the block hybrid method with equally spaced intra-step points to solve linear and nonlinear third-order initial value problems. The proposed block hybrid method uses a simple iteration scheme to linearize the equations. Numerical experimentation demonstrates that equally spaced grid points for the block hybrid method enhance its speed of convergence and accuracy compared to other conventional block hybrid methods in the literature. This improvement is attributed to the linearization process, which avoids the use of derivatives. Further, the block hybrid method is consistent, stable, and gives rapid convergence to the solutions. We show that the simple iteration method, when combined with the block hybrid method, exhibits impressive convergence characteristics while preserving computational efficiency. In this study, we also implement the proposed method to solve the nonlinear Jerk equation, producing comparable results with other methods used in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信