{"title":"太阳能驱动真空热离子发生器和循环多级热声驱动低温冷却器混合系统:基于能耗和突发事件的分析与优化","authors":"Yasaman Yousefi, A. Noorpoor, F. Boyaghchi","doi":"10.1063/5.0192008","DOIUrl":null,"url":null,"abstract":"Significant high-quality heat is wasted in the vacuum thermionic generator (VTIG), which can be efficiently utilized as a prime mover of a bottoming system for cogeneration applications. For this purpose, a new environmental-friendly hybrid system composed of a heliostat solar field, VTIG, and looped multi-stage thermoacoustically driven cryocooler (LMTC) is established, in which the high-temperature heat source of the solar receiver runs the VTIG to generate power, and the LMTC recovers the waste heat of the VTIG to produce a cooling load. Thermodynamic, economic, and environmental analyses of the system are carried out based on exergy and emergy concepts. Moreover, a parametric study is performed to assess the effect of design parameters on the system's thermodynamic, economic, and environmental criteria. Finally, the multi-criteria salp swarm optimization algorithm and decision-making procedures are conducted to improve the exergetic performance and decrease the system's cost and monetary emergy rates along with the environmental impact and ecological emergy rate. Findings depict that at the reliable, optimal operation of the system, the exergetic efficiency can reach 29.36% with a maximum power of 17.2 MW and cooling load of 0.260 MW. The system's cost and monetary emergy rate can be reduced to 0.059 $/s and 5.94 × 1010 seJ/s, with 10.6% and 10% reductions, respectively. Moreover, the environmental impact and ecological emergy rates decline by 6% and 7.4%, respectively. The theoretical findings may offer guidance for the optimum designing and practical running of such a solar solid-state cogeneration system.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid solar-driven vacuum thermionic generator and looped multi-stage thermoacoustically driven cryocooler system: Exergy- and emergy-based analysis and optimization\",\"authors\":\"Yasaman Yousefi, A. Noorpoor, F. Boyaghchi\",\"doi\":\"10.1063/5.0192008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant high-quality heat is wasted in the vacuum thermionic generator (VTIG), which can be efficiently utilized as a prime mover of a bottoming system for cogeneration applications. For this purpose, a new environmental-friendly hybrid system composed of a heliostat solar field, VTIG, and looped multi-stage thermoacoustically driven cryocooler (LMTC) is established, in which the high-temperature heat source of the solar receiver runs the VTIG to generate power, and the LMTC recovers the waste heat of the VTIG to produce a cooling load. Thermodynamic, economic, and environmental analyses of the system are carried out based on exergy and emergy concepts. Moreover, a parametric study is performed to assess the effect of design parameters on the system's thermodynamic, economic, and environmental criteria. Finally, the multi-criteria salp swarm optimization algorithm and decision-making procedures are conducted to improve the exergetic performance and decrease the system's cost and monetary emergy rates along with the environmental impact and ecological emergy rate. Findings depict that at the reliable, optimal operation of the system, the exergetic efficiency can reach 29.36% with a maximum power of 17.2 MW and cooling load of 0.260 MW. The system's cost and monetary emergy rate can be reduced to 0.059 $/s and 5.94 × 1010 seJ/s, with 10.6% and 10% reductions, respectively. Moreover, the environmental impact and ecological emergy rates decline by 6% and 7.4%, respectively. The theoretical findings may offer guidance for the optimum designing and practical running of such a solar solid-state cogeneration system.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0192008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0192008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A hybrid solar-driven vacuum thermionic generator and looped multi-stage thermoacoustically driven cryocooler system: Exergy- and emergy-based analysis and optimization
Significant high-quality heat is wasted in the vacuum thermionic generator (VTIG), which can be efficiently utilized as a prime mover of a bottoming system for cogeneration applications. For this purpose, a new environmental-friendly hybrid system composed of a heliostat solar field, VTIG, and looped multi-stage thermoacoustically driven cryocooler (LMTC) is established, in which the high-temperature heat source of the solar receiver runs the VTIG to generate power, and the LMTC recovers the waste heat of the VTIG to produce a cooling load. Thermodynamic, economic, and environmental analyses of the system are carried out based on exergy and emergy concepts. Moreover, a parametric study is performed to assess the effect of design parameters on the system's thermodynamic, economic, and environmental criteria. Finally, the multi-criteria salp swarm optimization algorithm and decision-making procedures are conducted to improve the exergetic performance and decrease the system's cost and monetary emergy rates along with the environmental impact and ecological emergy rate. Findings depict that at the reliable, optimal operation of the system, the exergetic efficiency can reach 29.36% with a maximum power of 17.2 MW and cooling load of 0.260 MW. The system's cost and monetary emergy rate can be reduced to 0.059 $/s and 5.94 × 1010 seJ/s, with 10.6% and 10% reductions, respectively. Moreover, the environmental impact and ecological emergy rates decline by 6% and 7.4%, respectively. The theoretical findings may offer guidance for the optimum designing and practical running of such a solar solid-state cogeneration system.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy