一种利用消耗叶片组织区域的视觉亮点估算昆虫落叶情况的自动方法

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY
Gabriel S. Vieira , Afonso U. Fonseca , Naiane Maria de Sousa , Julio C. Ferreira , Juliana Paula Felix , Christian Dias Cabacinha , Fabrizzio Soares
{"title":"一种利用消耗叶片组织区域的视觉亮点估算昆虫落叶情况的自动方法","authors":"Gabriel S. Vieira ,&nbsp;Afonso U. Fonseca ,&nbsp;Naiane Maria de Sousa ,&nbsp;Julio C. Ferreira ,&nbsp;Juliana Paula Felix ,&nbsp;Christian Dias Cabacinha ,&nbsp;Fabrizzio Soares","doi":"10.1016/j.inpa.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>As an essential component of the architecture of a plant, leaves are crucial to sustaining decision-making in cultivars and effectively support agricultural processes. When the leaf area is constantly monitored, a plant’s health and productive capacity can be assessed to foment proactive and reactive strategies. Because of that, one of the most critical tasks in agricultural processes is estimating foliar damage. In this sense, we present an automatic method to estimate leaf stress caused by insect herbivory, including damage in border regions. As a novelty, we present a method with well-defined processing steps suitable for numerical analysis and visual inspection of defoliation severity. We describe the proposed method and evaluate its performance concerning 12 different plant species. Experimental results show high assertiveness in estimating leaf area loss with a concordance correlation coefficient of 0.98 for grape, soybean, potato, and strawberry leaves. A classic pattern recognition approach, named template matching, is at the core of the method whose performance is compared to cutting-edge techniques. Results demonstrated that the method achieves foliar damage quantification with precision comparable to deep learning models. The code prepared by the authors is publicly available.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 1","pages":"Pages 40-53"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automatic method for estimating insect defoliation with visual highlights of consumed leaf tissue regions\",\"authors\":\"Gabriel S. Vieira ,&nbsp;Afonso U. Fonseca ,&nbsp;Naiane Maria de Sousa ,&nbsp;Julio C. Ferreira ,&nbsp;Juliana Paula Felix ,&nbsp;Christian Dias Cabacinha ,&nbsp;Fabrizzio Soares\",\"doi\":\"10.1016/j.inpa.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an essential component of the architecture of a plant, leaves are crucial to sustaining decision-making in cultivars and effectively support agricultural processes. When the leaf area is constantly monitored, a plant’s health and productive capacity can be assessed to foment proactive and reactive strategies. Because of that, one of the most critical tasks in agricultural processes is estimating foliar damage. In this sense, we present an automatic method to estimate leaf stress caused by insect herbivory, including damage in border regions. As a novelty, we present a method with well-defined processing steps suitable for numerical analysis and visual inspection of defoliation severity. We describe the proposed method and evaluate its performance concerning 12 different plant species. Experimental results show high assertiveness in estimating leaf area loss with a concordance correlation coefficient of 0.98 for grape, soybean, potato, and strawberry leaves. A classic pattern recognition approach, named template matching, is at the core of the method whose performance is compared to cutting-edge techniques. Results demonstrated that the method achieves foliar damage quantification with precision comparable to deep learning models. The code prepared by the authors is publicly available.</div></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"12 1\",\"pages\":\"Pages 40-53\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317324000192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为植物结构的重要组成部分,叶片对维持品种决策和有效支持农业进程至关重要。当不断监测叶面积时,可以评估植物的健康和生产能力,以促进主动和被动策略。正因为如此,农业过程中最关键的任务之一是估计叶面损害。在这个意义上,我们提出了一种自动估计昆虫食草性叶片胁迫的方法,包括边界地区的损害。作为一种新颖的方法,我们提出了一种具有明确定义的处理步骤的方法,适用于数值分析和落叶严重程度的目视检查。我们描述了所提出的方法,并评估了其在12种不同植物物种上的性能。实验结果表明,葡萄、大豆、马铃薯和草莓叶片的叶面积损失估计具有较高的自信,一致性相关系数为0.98。该方法的核心是一种经典的模式识别方法,即模板匹配方法,其性能与前沿技术相比较。结果表明,该方法达到了与深度学习模型相当的精度。作者编写的代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automatic method for estimating insect defoliation with visual highlights of consumed leaf tissue regions
As an essential component of the architecture of a plant, leaves are crucial to sustaining decision-making in cultivars and effectively support agricultural processes. When the leaf area is constantly monitored, a plant’s health and productive capacity can be assessed to foment proactive and reactive strategies. Because of that, one of the most critical tasks in agricultural processes is estimating foliar damage. In this sense, we present an automatic method to estimate leaf stress caused by insect herbivory, including damage in border regions. As a novelty, we present a method with well-defined processing steps suitable for numerical analysis and visual inspection of defoliation severity. We describe the proposed method and evaluate its performance concerning 12 different plant species. Experimental results show high assertiveness in estimating leaf area loss with a concordance correlation coefficient of 0.98 for grape, soybean, potato, and strawberry leaves. A classic pattern recognition approach, named template matching, is at the core of the method whose performance is compared to cutting-edge techniques. Results demonstrated that the method achieves foliar damage quantification with precision comparable to deep learning models. The code prepared by the authors is publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信