基于 ARIMA-TR 模型的全球变暖条件下世界玉米的潜在产量

Q3 Agricultural and Biological Sciences
Chengzhi Cai, Tingting Deng, Wenfang Cao
{"title":"基于 ARIMA-TR 模型的全球变暖条件下世界玉米的潜在产量","authors":"Chengzhi Cai, Tingting Deng, Wenfang Cao","doi":"10.54386/jam.v26i1.2483","DOIUrl":null,"url":null,"abstract":"With continuous increase of population and demand for nutritional food, analyzing potential yield of world maize affected by global warming is of great significance to direct the crop production in the future. Thus, in this paper both average and top (national) yields of world maize between 2021 and 2030 are projected creatively using ARIMA-TR (Auto-regressive Integrated Moving Average and Trend Regression) model based on historic yields since 1961. The impact of global warming on the yields of world maize from 1961 to 2020 was analyzed using unary regression model. Our study concludes that between 2021 and 2030, average yield of world maize is projected to be from 5989 kg ha-1 to 6703 kg ha-1 while the top yield from 36530 kg ha-1 to 44271 kg ha-1, or the average ranging from 16.39% decreasingly to 15.14% of the top; from 1961 to 2020 global warming exerts positive effect on average yield of world maize less than on the top, which partly drives the gap between these two yields widened gradually; for world maize by 2030, the opportunities for improving global production should be mainly dependent on the advantage of high-yield countries.","PeriodicalId":56127,"journal":{"name":"Journal of Agrometeorology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential yield of world maize under global warming based on ARIMA-TR model\",\"authors\":\"Chengzhi Cai, Tingting Deng, Wenfang Cao\",\"doi\":\"10.54386/jam.v26i1.2483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With continuous increase of population and demand for nutritional food, analyzing potential yield of world maize affected by global warming is of great significance to direct the crop production in the future. Thus, in this paper both average and top (national) yields of world maize between 2021 and 2030 are projected creatively using ARIMA-TR (Auto-regressive Integrated Moving Average and Trend Regression) model based on historic yields since 1961. The impact of global warming on the yields of world maize from 1961 to 2020 was analyzed using unary regression model. Our study concludes that between 2021 and 2030, average yield of world maize is projected to be from 5989 kg ha-1 to 6703 kg ha-1 while the top yield from 36530 kg ha-1 to 44271 kg ha-1, or the average ranging from 16.39% decreasingly to 15.14% of the top; from 1961 to 2020 global warming exerts positive effect on average yield of world maize less than on the top, which partly drives the gap between these two yields widened gradually; for world maize by 2030, the opportunities for improving global production should be mainly dependent on the advantage of high-yield countries.\",\"PeriodicalId\":56127,\"journal\":{\"name\":\"Journal of Agrometeorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agrometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54386/jam.v26i1.2483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54386/jam.v26i1.2483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

随着人口和营养食品需求的不断增长,分析受全球变暖影响的世界玉米潜在产量对于指导未来的作物生产具有重要意义。因此,本文根据 1961 年以来的历史产量,采用 ARIMA-TR(自回归整合移动平均和趋势回归)模型,创造性地预测了 2021 年至 2030 年世界玉米的平均产量和最高(国家)产量。使用单回归模型分析了全球变暖对 1961 年至 2020 年世界玉米产量的影响。我们的研究得出结论,2021 年至 2030 年,世界玉米平均单产预计将从 5989 千克/公顷-1 增至 6703 千克/公顷-1,最高单产将从 36530 千克/公顷-1 增至 44271 千克/公顷-1,即平均单产将从 16.39% 递减至 15.14%。从 1961 年到 2020 年,全球变暖对世界玉米平均单产的积极影响小于对最高单产的积极影响,这在一定程度上拉大了两者之间的差距;对于 2030 年的世界玉米而言,全球产量的提高机会应主要依赖于高产国家的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential yield of world maize under global warming based on ARIMA-TR model
With continuous increase of population and demand for nutritional food, analyzing potential yield of world maize affected by global warming is of great significance to direct the crop production in the future. Thus, in this paper both average and top (national) yields of world maize between 2021 and 2030 are projected creatively using ARIMA-TR (Auto-regressive Integrated Moving Average and Trend Regression) model based on historic yields since 1961. The impact of global warming on the yields of world maize from 1961 to 2020 was analyzed using unary regression model. Our study concludes that between 2021 and 2030, average yield of world maize is projected to be from 5989 kg ha-1 to 6703 kg ha-1 while the top yield from 36530 kg ha-1 to 44271 kg ha-1, or the average ranging from 16.39% decreasingly to 15.14% of the top; from 1961 to 2020 global warming exerts positive effect on average yield of world maize less than on the top, which partly drives the gap between these two yields widened gradually; for world maize by 2030, the opportunities for improving global production should be mainly dependent on the advantage of high-yield countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agrometeorology
Journal of Agrometeorology 农林科学-农艺学
CiteScore
1.40
自引率
0.00%
发文量
95
审稿时长
>12 weeks
期刊介绍: The Journal of Agrometeorology (ISSN 0972-1665) , is a quarterly publication of Association of Agrometeorologists appearing in March, June, September and December. Since its beginning in 1999 till 2016, it was a half yearly publication appearing in June and December. In addition to regular issues, Association also brings out the special issues of the journal covering selected papers presented in seminar symposia organized by the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信