T. Huynh, Quyen Huynh, Ngoc-Han T Huynh, Hau Quoc Pham
{"title":"在掺杂 Ir、N 的 TiO2-supported Pt 纳米催化剂上增强甲酸电氧化反应","authors":"T. Huynh, Quyen Huynh, Ngoc-Han T Huynh, Hau Quoc Pham","doi":"10.1088/2043-6262/ad2c7d","DOIUrl":null,"url":null,"abstract":"\n In this work, we prepared an Ir,N-doped TiO2 nanomaterial via a facile HNO3-assisted hydrothermal process that was used as an advanced support for nano-sized Pt nanoparticles (NPs) for the formic acid oxidation reaction (FAOR). The physical and electrochemical behaviours of the as-made Pt/Ir,N-doped TiO2 catalyst were systemically investigated through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopes coupled with energy dispersive X-ray analysis (FE-SEM/EDX mapping), transmission electron microscopy (TEM), linear sweep voltammetry (LSV), Tafel slope, CO-stripping, and chronoamperometric (CA) test. The Pt NPs (ca. 3 nm) were anchored on the Ir,N-doped TiO2 support, being formed by a mixture of rutile and brookite with a particle size of several ten nanometers. Due to the small size and uniform distribution of Pt NPs, the Pt/Ir,N-doped TiO2 catalyst had an electrochemical surface area of 79.88 m2 g−1, which was greater than that of the commercial Pt/C (77.63 m2 g−1). In terms of the FAOR, the Pt/Ir,N-doped TiO2 catalyst showed a negative FAOR onset potential, high current density (11.85 mA cm−2), and superior CO-tolerance compared to the commercially available catalyst. Also, the as-made catalyst possessed high electrochemical durability after 3600 s for testing. The enhanced FAOR efficiency was assigned to the formation of a dual-doping effect and strong interplay between Pt and TiO2-based support, which not only improved the electron transfer but also weakened the adsorption of carbonaceous species, thereby boosting the reaction kinetics. This study could open up a facile but effective strategy to promote particular electrochemical applications.","PeriodicalId":56371,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"22 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced formic acid electro-oxidation reaction over Ir,N-doped TiO2-supported Pt nanocatalyst\",\"authors\":\"T. Huynh, Quyen Huynh, Ngoc-Han T Huynh, Hau Quoc Pham\",\"doi\":\"10.1088/2043-6262/ad2c7d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, we prepared an Ir,N-doped TiO2 nanomaterial via a facile HNO3-assisted hydrothermal process that was used as an advanced support for nano-sized Pt nanoparticles (NPs) for the formic acid oxidation reaction (FAOR). The physical and electrochemical behaviours of the as-made Pt/Ir,N-doped TiO2 catalyst were systemically investigated through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopes coupled with energy dispersive X-ray analysis (FE-SEM/EDX mapping), transmission electron microscopy (TEM), linear sweep voltammetry (LSV), Tafel slope, CO-stripping, and chronoamperometric (CA) test. The Pt NPs (ca. 3 nm) were anchored on the Ir,N-doped TiO2 support, being formed by a mixture of rutile and brookite with a particle size of several ten nanometers. Due to the small size and uniform distribution of Pt NPs, the Pt/Ir,N-doped TiO2 catalyst had an electrochemical surface area of 79.88 m2 g−1, which was greater than that of the commercial Pt/C (77.63 m2 g−1). In terms of the FAOR, the Pt/Ir,N-doped TiO2 catalyst showed a negative FAOR onset potential, high current density (11.85 mA cm−2), and superior CO-tolerance compared to the commercially available catalyst. Also, the as-made catalyst possessed high electrochemical durability after 3600 s for testing. The enhanced FAOR efficiency was assigned to the formation of a dual-doping effect and strong interplay between Pt and TiO2-based support, which not only improved the electron transfer but also weakened the adsorption of carbonaceous species, thereby boosting the reaction kinetics. This study could open up a facile but effective strategy to promote particular electrochemical applications.\",\"PeriodicalId\":56371,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":\"22 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ad2c7d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad2c7d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Enhanced formic acid electro-oxidation reaction over Ir,N-doped TiO2-supported Pt nanocatalyst
In this work, we prepared an Ir,N-doped TiO2 nanomaterial via a facile HNO3-assisted hydrothermal process that was used as an advanced support for nano-sized Pt nanoparticles (NPs) for the formic acid oxidation reaction (FAOR). The physical and electrochemical behaviours of the as-made Pt/Ir,N-doped TiO2 catalyst were systemically investigated through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopes coupled with energy dispersive X-ray analysis (FE-SEM/EDX mapping), transmission electron microscopy (TEM), linear sweep voltammetry (LSV), Tafel slope, CO-stripping, and chronoamperometric (CA) test. The Pt NPs (ca. 3 nm) were anchored on the Ir,N-doped TiO2 support, being formed by a mixture of rutile and brookite with a particle size of several ten nanometers. Due to the small size and uniform distribution of Pt NPs, the Pt/Ir,N-doped TiO2 catalyst had an electrochemical surface area of 79.88 m2 g−1, which was greater than that of the commercial Pt/C (77.63 m2 g−1). In terms of the FAOR, the Pt/Ir,N-doped TiO2 catalyst showed a negative FAOR onset potential, high current density (11.85 mA cm−2), and superior CO-tolerance compared to the commercially available catalyst. Also, the as-made catalyst possessed high electrochemical durability after 3600 s for testing. The enhanced FAOR efficiency was assigned to the formation of a dual-doping effect and strong interplay between Pt and TiO2-based support, which not only improved the electron transfer but also weakened the adsorption of carbonaceous species, thereby boosting the reaction kinetics. This study could open up a facile but effective strategy to promote particular electrochemical applications.