用于电池材料检测的大数据分析技术

Thomas Lang, Anja Heim, Christoph Heinzl
{"title":"用于电池材料检测的大数据分析技术","authors":"Thomas Lang, Anja Heim, Christoph Heinzl","doi":"10.58286/29226","DOIUrl":null,"url":null,"abstract":"\nThe analysis of battery materials regarding their microstructure provides key insights on their performance in the target application, e.g., in terms of electrical conductivity, durability, or resistance to destructive exothermic reactions upon damage. Typically,\n\nhigh resolution scans on a large fields-of-view are required for this purpose, which implies rapidly increasing dataset sizes. This\n\nwork introduces a big data analytics approach integrating segmentation and quantification techniques, which are scaling with\n\nlarge high-resolution computed tomography data, in order to generate rich computed tomography data. Subsequent visualizations support the final decision making. Representative results of this method are demonstrated on a commercially available\n\n18650 cylindrical lithium-ion battery cell.\n","PeriodicalId":482749,"journal":{"name":"e-Journal of Nondestructive Testing","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big Data Analytics for the Inspection of Battery Materials\",\"authors\":\"Thomas Lang, Anja Heim, Christoph Heinzl\",\"doi\":\"10.58286/29226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe analysis of battery materials regarding their microstructure provides key insights on their performance in the target application, e.g., in terms of electrical conductivity, durability, or resistance to destructive exothermic reactions upon damage. Typically,\\n\\nhigh resolution scans on a large fields-of-view are required for this purpose, which implies rapidly increasing dataset sizes. This\\n\\nwork introduces a big data analytics approach integrating segmentation and quantification techniques, which are scaling with\\n\\nlarge high-resolution computed tomography data, in order to generate rich computed tomography data. Subsequent visualizations support the final decision making. Representative results of this method are demonstrated on a commercially available\\n\\n18650 cylindrical lithium-ion battery cell.\\n\",\"PeriodicalId\":482749,\"journal\":{\"name\":\"e-Journal of Nondestructive Testing\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Journal of Nondestructive Testing\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.58286/29226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Journal of Nondestructive Testing","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.58286/29226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对电池材料的微观结构进行分析,可以深入了解其在目标应用中的性能,例如导电性、耐用性或抗破坏性放热反应的能力。为此,通常需要在大视场上进行高分辨率扫描,这意味着数据集的规模会迅速扩大。这项工作引入了一种大数据分析方法,该方法集成了分割和量化技术,可与大型高分辨率计算机断层扫描数据进行缩放,从而生成丰富的计算机断层扫描数据。随后的可视化支持最终决策。该方法的代表性结果在市售的 18650 圆柱形锂离子电池上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big Data Analytics for the Inspection of Battery Materials
The analysis of battery materials regarding their microstructure provides key insights on their performance in the target application, e.g., in terms of electrical conductivity, durability, or resistance to destructive exothermic reactions upon damage. Typically, high resolution scans on a large fields-of-view are required for this purpose, which implies rapidly increasing dataset sizes. This work introduces a big data analytics approach integrating segmentation and quantification techniques, which are scaling with large high-resolution computed tomography data, in order to generate rich computed tomography data. Subsequent visualizations support the final decision making. Representative results of this method are demonstrated on a commercially available 18650 cylindrical lithium-ion battery cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信