一类非线性二阶演化方程的温和解

Pub Date : 2024-03-03 DOI:10.12775/tmna.2023.021
Jésus Garcia-Falset
{"title":"一类非线性二阶演化方程的温和解","authors":"Jésus Garcia-Falset","doi":"10.12775/tmna.2023.021","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study the existence of mild\nsolutions to a class of second order nonlinear evolution equations of the form\n\\begin{equation*}\n\\begin{cases}\n u''(t)+A(u'(t))+B(u(t))\\ni f(t), &t\\in(0,T),\\\\\nu(0)=u_0, \\quad u'(0)=g(u')\n\\end{cases}\n\\end{equation*} \nwhere\n$A\\colon D(A)\\subseteq X\\rightarrow 2^{X}$ is an $m$-accretive operator\non a Banach space $X,$ $B: X\\rightarrow X$ is a lipschitz mapping, \n$g\\colon C([0,T];X)\\to X$ is a function and $f\\in L^1(0,T,X)$. \nWe obtain sufficient conditions for this problem to have at least a mild solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mild solutions to a class of nonlinear second order evolution equations\",\"authors\":\"Jésus Garcia-Falset\",\"doi\":\"10.12775/tmna.2023.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to study the existence of mild\\nsolutions to a class of second order nonlinear evolution equations of the form\\n\\\\begin{equation*}\\n\\\\begin{cases}\\n u''(t)+A(u'(t))+B(u(t))\\\\ni f(t), &t\\\\in(0,T),\\\\\\\\\\nu(0)=u_0, \\\\quad u'(0)=g(u')\\n\\\\end{cases}\\n\\\\end{equation*} \\nwhere\\n$A\\\\colon D(A)\\\\subseteq X\\\\rightarrow 2^{X}$ is an $m$-accretive operator\\non a Banach space $X,$ $B: X\\\\rightarrow X$ is a lipschitz mapping, \\n$g\\\\colon C([0,T];X)\\\\to X$ is a function and $f\\\\in L^1(0,T,X)$. \\nWe obtain sufficient conditions for this problem to have at least a mild solution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2023.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2023.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究一类二阶非线性演化方程的温和解的存在性,其形式为:begin{equation*}\begin{cases} u''(t)+A(u'(t))+B(u(t))\ni f(t)、&t\in(0,T),\u(0)=u_0, \quad u'(0)=g(u')\end{cases}\end{equation*} 其中$A/colon D(A)\subseteq X\rightarrow 2^{X}$ 是一个巴拿赫空间$X,$B上的$m$-自洽算子:Xrightarrow X$ 是一个 lipschitz 映射,$g\colon C([0,T];X)/to X$ 是一个函数,$f\in L^1(0,T,X)$ 是一个函数。我们得到了这个问题至少有一个温和解的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Mild solutions to a class of nonlinear second order evolution equations
The purpose of this paper is to study the existence of mild solutions to a class of second order nonlinear evolution equations of the form \begin{equation*} \begin{cases} u''(t)+A(u'(t))+B(u(t))\ni f(t), &t\in(0,T),\\ u(0)=u_0, \quad u'(0)=g(u') \end{cases} \end{equation*} where $A\colon D(A)\subseteq X\rightarrow 2^{X}$ is an $m$-accretive operator on a Banach space $X,$ $B: X\rightarrow X$ is a lipschitz mapping, $g\colon C([0,T];X)\to X$ is a function and $f\in L^1(0,T,X)$. We obtain sufficient conditions for this problem to have at least a mild solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信