{"title":"一类非线性二阶演化方程的温和解","authors":"Jésus Garcia-Falset","doi":"10.12775/tmna.2023.021","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study the existence of mild\nsolutions to a class of second order nonlinear evolution equations of the form\n\\begin{equation*}\n\\begin{cases}\n u''(t)+A(u'(t))+B(u(t))\\ni f(t), &t\\in(0,T),\\\\\nu(0)=u_0, \\quad u'(0)=g(u')\n\\end{cases}\n\\end{equation*} \nwhere\n$A\\colon D(A)\\subseteq X\\rightarrow 2^{X}$ is an $m$-accretive operator\non a Banach space $X,$ $B: X\\rightarrow X$ is a lipschitz mapping, \n$g\\colon C([0,T];X)\\to X$ is a function and $f\\in L^1(0,T,X)$. \nWe obtain sufficient conditions for this problem to have at least a mild solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mild solutions to a class of nonlinear second order evolution equations\",\"authors\":\"Jésus Garcia-Falset\",\"doi\":\"10.12775/tmna.2023.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to study the existence of mild\\nsolutions to a class of second order nonlinear evolution equations of the form\\n\\\\begin{equation*}\\n\\\\begin{cases}\\n u''(t)+A(u'(t))+B(u(t))\\\\ni f(t), &t\\\\in(0,T),\\\\\\\\\\nu(0)=u_0, \\\\quad u'(0)=g(u')\\n\\\\end{cases}\\n\\\\end{equation*} \\nwhere\\n$A\\\\colon D(A)\\\\subseteq X\\\\rightarrow 2^{X}$ is an $m$-accretive operator\\non a Banach space $X,$ $B: X\\\\rightarrow X$ is a lipschitz mapping, \\n$g\\\\colon C([0,T];X)\\\\to X$ is a function and $f\\\\in L^1(0,T,X)$. \\nWe obtain sufficient conditions for this problem to have at least a mild solution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2023.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2023.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mild solutions to a class of nonlinear second order evolution equations
The purpose of this paper is to study the existence of mild
solutions to a class of second order nonlinear evolution equations of the form
\begin{equation*}
\begin{cases}
u''(t)+A(u'(t))+B(u(t))\ni f(t), &t\in(0,T),\\
u(0)=u_0, \quad u'(0)=g(u')
\end{cases}
\end{equation*}
where
$A\colon D(A)\subseteq X\rightarrow 2^{X}$ is an $m$-accretive operator
on a Banach space $X,$ $B: X\rightarrow X$ is a lipschitz mapping,
$g\colon C([0,T];X)\to X$ is a function and $f\in L^1(0,T,X)$.
We obtain sufficient conditions for this problem to have at least a mild solution.