具有临界增长的双相基尔霍夫型问题正解的多重性和集中性

Pub Date : 2024-03-03 DOI:10.12775/tmna.2023.026
Jie Yang, Lintao Liu, Fengjuan Meng
{"title":"具有临界增长的双相基尔霍夫型问题正解的多重性和集中性","authors":"Jie Yang, Lintao Liu, Fengjuan Meng","doi":"10.12775/tmna.2023.026","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study the multiplicity and concentration\nof positive solutions to the $(p,q)$ Kirchhoff-type problems\ninvolving a positive potential and a continuous nonlinearity with critical growth\nat infinity. Applying penalization techniques, truncation methods and the\nLusternik-Schnirelmann theory, we investigate a relationship between\n the number of positive solutions\nand the topology of the set where the potential $V$ attains its minimum values.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity and concentration of positive solutions to the double phase Kirchhoff type problems with critical growth\",\"authors\":\"Jie Yang, Lintao Liu, Fengjuan Meng\",\"doi\":\"10.12775/tmna.2023.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study the multiplicity and concentration\\nof positive solutions to the $(p,q)$ Kirchhoff-type problems\\ninvolving a positive potential and a continuous nonlinearity with critical growth\\nat infinity. Applying penalization techniques, truncation methods and the\\nLusternik-Schnirelmann theory, we investigate a relationship between\\n the number of positive solutions\\nand the topology of the set where the potential $V$ attains its minimum values.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2023.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2023.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究涉及正电势和临界增长无穷大的连续非线性的$(p,q)$ 基尔霍夫型问题的正解的多重性和集中性。我们应用惩罚技术、截断方法和 Lusternik-Schnirelmann 理论,研究了正解的数量与势 $V$ 达到最小值的集合拓扑之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiplicity and concentration of positive solutions to the double phase Kirchhoff type problems with critical growth
The aim of this paper is to study the multiplicity and concentration of positive solutions to the $(p,q)$ Kirchhoff-type problems involving a positive potential and a continuous nonlinearity with critical growth at infinity. Applying penalization techniques, truncation methods and the Lusternik-Schnirelmann theory, we investigate a relationship between the number of positive solutions and the topology of the set where the potential $V$ attains its minimum values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信