一类带势能的乔夸德方程的归一化解

Pub Date : 2024-03-03 DOI:10.12775/tmna.2023.028
Lei Long, Xiaojing Feng
{"title":"一类带势能的乔夸德方程的归一化解","authors":"Lei Long, Xiaojing Feng","doi":"10.12775/tmna.2023.028","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence and nonexistence of solutions\nto the following Choquard-type equation\n\\begin{equation*}\n-\\Delta u+(V+\\lambda)u=(I_\\alpha*F(u))f(u)\\quad\\text{in } \\mathbb{R}^N,\n\\end{equation*}\nhaving prescribed mass $\\int_{\\mathbb{R}^N}u^2=a$, where\n$\\lambda\\in\\mathbb{R}$ will arise as a Lagrange multiplier, $N\\geq 3$,\n$\\alpha\\in(0,N)$, $I_\\alpha$ is Riesz potential. Under suitable assumptions\non the potential function $V$ and the nonlinear term $f$, $a_0\\in[0,\\infty)$\nexists such that the above equation has a positive ground state normalized solution\n if $a\\in(a_0,\\infty)$ and one has no ground state normalized solution\n if $a\\in(0,a_0)$ when $a_0> 0$ by comparison arguments. Moreover,\n we obtain sufficient conditions for $a_0=0$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized solutions to a class of Choquard-type equations with potential\",\"authors\":\"Lei Long, Xiaojing Feng\",\"doi\":\"10.12775/tmna.2023.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence and nonexistence of solutions\\nto the following Choquard-type equation\\n\\\\begin{equation*}\\n-\\\\Delta u+(V+\\\\lambda)u=(I_\\\\alpha*F(u))f(u)\\\\quad\\\\text{in } \\\\mathbb{R}^N,\\n\\\\end{equation*}\\nhaving prescribed mass $\\\\int_{\\\\mathbb{R}^N}u^2=a$, where\\n$\\\\lambda\\\\in\\\\mathbb{R}$ will arise as a Lagrange multiplier, $N\\\\geq 3$,\\n$\\\\alpha\\\\in(0,N)$, $I_\\\\alpha$ is Riesz potential. Under suitable assumptions\\non the potential function $V$ and the nonlinear term $f$, $a_0\\\\in[0,\\\\infty)$\\nexists such that the above equation has a positive ground state normalized solution\\n if $a\\\\in(a_0,\\\\infty)$ and one has no ground state normalized solution\\n if $a\\\\in(0,a_0)$ when $a_0> 0$ by comparison arguments. Moreover,\\n we obtain sufficient conditions for $a_0=0$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2023.028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2023.028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了下列乔夸德方程的解的存在性和不存在性:u+(V+lambda)u=(I_α*F(u))f(u)\quad\text{in }。\其中$lambda\inmathbb{R}$将作为拉格朗日乘数出现,$N\geq 3$,$alpha\in(0,N)$,$I_\alpha$是里兹势。在对势函数 $V$ 和非线性项 $f$ 作适当假设的情况下,存在 $a_0\in[0,\infty)$,这样,如果 $a\in(a_0,\infty)$,上述方程就有一个正的基态归一化解;如果 $a\in(0,a_0)$,当 $a_0> 0$ 时,通过比较论证,就没有基态归一化解。此外,我们还得到了 $a_0=0$ 的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Normalized solutions to a class of Choquard-type equations with potential
In this paper, we study the existence and nonexistence of solutions to the following Choquard-type equation \begin{equation*} -\Delta u+(V+\lambda)u=(I_\alpha*F(u))f(u)\quad\text{in } \mathbb{R}^N, \end{equation*} having prescribed mass $\int_{\mathbb{R}^N}u^2=a$, where $\lambda\in\mathbb{R}$ will arise as a Lagrange multiplier, $N\geq 3$, $\alpha\in(0,N)$, $I_\alpha$ is Riesz potential. Under suitable assumptions on the potential function $V$ and the nonlinear term $f$, $a_0\in[0,\infty)$ exists such that the above equation has a positive ground state normalized solution if $a\in(a_0,\infty)$ and one has no ground state normalized solution if $a\in(0,a_0)$ when $a_0> 0$ by comparison arguments. Moreover, we obtain sufficient conditions for $a_0=0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信